Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Influence of Fuel Composition on Particulate Emissions of DI Diesel Engines

The effect of different fuel parameters on emissions is difficult to understand, the response depending upon different engine technologies. In addition the isolation of some of the fuel variables is often very hard. The present paper discusses the main results obtained testing a matrix of 14 fuels designed for obtain large variations of cetane number, sulphur and aromatic contents of Diesel oil. The aromatic structure of fuels and its effect on particulate emissions was also investigated. A linear regression analysis was performed in order to isolate the main controlling factors on particulate emissions. Finally the influence of aromatic contents of fuel on unregulated emissions was also assessed.
Technical Paper

Soot Formation and Oxidation in a DI Diesel Engine: A Comparison Between Measurements and Three Dimensional Computations

Three dimensional computations of Diesel combustion were performed using a modified version of Kiva II code. The autoignition and combustion model were tuned on a set of experimental conditions, changing the engine design, the operating conditions and the fuel characteristics. The sensitivity of the model to the different test cases is acceptable and the experimental trends are well reproduced. In addition the peak of pressure and temperature computed by the code are quite close to the experimental values, as well as the pressure derivatives. Once tuned the combustion model constants, different but simple formulations for the soot formation and oxidation processes were implemented in the code and compared with the experimental measurements obtained both with fast sampling technique and two colors method. These formulations were found unable to give good prediction in a large range of engine operating conditions, even if the model tuning may be very good for each test point.
Technical Paper

Experimental Investigation on the Combustion and Emissions of a Light Duty Diesel Engine Fuelled with Butanol-Diesel Blend

In the present paper, results of an experimental investigation carried out in a modern Diesel engine running at different operating conditions and fuelled with commercial diesel and n-butanol-diesel blend are reported. The investigation was focused on the management of injection strategy and combustion timing (CA50) exploring the effect of intake oxygen concentration and boost pressure on engine out emissions. The aim of the paper was to compare, with respect to commercial diesel, the effects of a fuel blend with a lower cetane number and higher volatility on performance and engine out emissions. Engine tests, with baseline diesel and a blend made by the baseline low sulphur diesel with 20% in volume of n-butanol (B20), were performed comparing engine out gaseous, smoke emissions and combustion efficiency. The investigation was performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system.
Technical Paper

Low Cetane Number Renewable Oxy-fuels for Premixed Combustion Concept Application: Experimental Investigation on a Light Duty Diesel Engine

This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed their straight and branched counterparts at equal oxygen content and with respect to lowering soot emissions. A clear correlation was reported linking soot and CN, with lower CN fuels leading to more favorable soot levels. It was concluded that a lower CN fuel, when realized by adding low reactive cyclic oxygenates to commercial diesel fuel, manifests in longer ignition delays and thus more premixing. Ultimately, a higher degree of premixing, in turn, was thought to suppress soot formation rates.
Technical Paper

Assessment of the Effect of Low Cetane Number Fuels on a Light Duty CI Engine: Preliminary Experimental Characterization in PCCI Operating Condition

The goal of this paper is to acquire insight into the influence of cetane number (CN) and fuel oxygen on overall engine performance in the Premixed Charge Compression Ignition (PCCI) combustion mode. From literature, it is known that low reactive (i.e., low CN) fuels increase the ignition delay (ID) and therefore the degree of mixing prior to auto-ignition. With respect to fuel oxygen, it is known that this has a favorable impact on soot emissions by means of carbon sequestration. This makes the use of low CN oxygen fuels an interesting route to improve the applicability of PCCI combustion in diesel engines. In earlier studies, performed on a heavy-duty engine, cyclic oxygenates were found to consistently outperform their straight and branched counterparts with respect to curbing soot. This was attributed to a considerably lower CN.
Technical Paper

Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines

Optical imaging and UV-visible detection of in-cylinder combustion phenomena were made in a single cylinder optically accessed high swirl multi-jets compression ignition engine operating with two different fuels and two EGR levels. A commercial diesel fuel and a lighter fuel blend of diesel (80%) and gasoline (20%), named G20, were tested for two injection pressures (70 and 140 MPa) and injection timings in the range 11 CAD BTDC to 5 CAD ATDC. The blend G20 has a lower cetane number, is more volatile and more resistant to the auto-ignition than diesel yielding an effect on the ignition delay and on the combustion performance. Instantaneous fuel injection rate, in-cylinder combustion pressure, NOx and smoke engine out emissions were measured. Taking into account the particular configuration of the engine, the efficiency was estimated by determining the area under the working engine cycle.
Technical Paper

UV-Visible Imaging and Natural Emission Spectroscopy of Premixed Combustion in High Swirl Multi-Jets Compression Ignition Engine Fuelled with Diesel-Gasoline Blend

One promising approach to reduce pollutants from compression ignition engines is the Partially-Premixed- Combustion in which engine out emissions can be reduced by promoting mixing of fuel and air prior to auto-ignition. A great interest for a premixed combustion regime is the investigation on fuels with different reactivity by blending diesel with lower cetane number and higher volatility fuels. In fact, fuels more resistant to auto-ignition give longer ignition delay that may enhance the fuel/air mixing prior to combustion. During the ignition delay period, the fuel spray atomizes into small droplets, vaporizes and mixes with air. As the piston moves towards TDC, as soon as the mixture temperature reaches the ignition point, instantaneously some pre-mixed amount of fuel and air ignites. The balance of fuel that does not burn in premixed combustion is consumed in the rate-controlled combustion phase, also known as diffusion combustion.
Technical Paper

Effect of Port Injected Ethanol on Combustion Characteristics in a Dual-Fuel Light Duty Diesel Engine

Nowadays, alcoholic fuels gain increased interest as alternative transportation biofuel even in compression ignition engines due to the fact that they contain oxygen and can be produced in a sustainable way. Furthermore, due to their lower CN (Cetane Number) they suit better for premixed combustion applications. Experimental research was conducted on a single cylinder engine provided with modern engine architecture modified for DF (Dual-Fuel) purposes. The authors have investigated the use of ethanol in a DF engine in order to exploit its well-known advantages in premixed combustion mode. The DF approach appears to be a promising solution because it permits flexible control of the premixed fuel fraction regardless from the operating conditions. This improves the exploitation of the ethanol potential according the engine working conditions.
Technical Paper

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near TDC conditions in compression ignition engines was modified with post pre-burn gas induction to incorporate a premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing and limitations of the induction systems were studied. As a result of this study the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system limits post pre-burn were conducted to determine the pressure and temperature limits of the methane autoignition.