Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines

1997-05-01
971712
Dual-fuel pilot ignited natural gas engines have several intrinsic advantages relative to spark ignited; mainly higher thermal efficiency and lower conversion costs. The major drawback is associated with light loads. This paper discusses objectives, approaches, methods and results of the development of strategies which overcome the drawbacks and enhance the advantages. Development of a pilot fuel injection system, having a delivery of only 1 mm3 at a duration of 0.6 ms, was described in a previous paper. This paper concentrates on the results of strategies to reduce unburned methane in the exhaust and to increase the substitution of gas at light loads through skip-fire, by-passing boost air and exhaust gas recirculation techniques. Engine tests proved that with these strategies, diesel fuel replacement of more than 95% over the entire engine operating map, including idle, can be achieved and current and anticipated future emission standards satisfied.
Technical Paper

Electronic Direct Fuel Injection System Applied to an 1100cc Two-Stroke Personal Watercraft Engine

1998-02-23
980756
Direct injection has been considered the most effective approach to overcome the inherent short-circuiting of fuel in a two-stroke engine. A practical application of this technology on an 1100cc personal watercraft (PWC) engine is described. The experimental results show a drastic improvement in the engine emissions and fuel economy while maintaining good output performance and drive-ability of the PWC tested. The all-electronic, direct fuel injection engine has demonstrated a 76.3% reduction in hydrocarbon (HC) emissions and 43.03 g/kW-h HC plus oxides of nitrogen (NOx) emissions. This HC + NOx level meets the emission standards applicable to the 2006 model year set by the Environmental Protection Agency (EPA) for new gasoline spark-ignition marine engines. Finally some considerations on extending the technology to include combustion control in the areas of both air and spark management, are recommended.
Technical Paper

Development of Pilot Fuel Injection System for CNG Engine

1996-05-01
961100
The paper discusses objectives, approaches and results of the development of a pilot fuel injection system (FIS) for a dedicated, compression ignition, high-speed, heavy duty natural gas/diesel engine. The performance of the pilot FIS is crucial for the success of a dual fuel concept. The Servojet electro-hydraulic, accumulator type fuel system was chosen for the pilot fuel injection. An alternative pilot FIS based on the “water hammer” (WH) effect was also considered. The modifications to a stock 17 min injector is described. Three different types of pilot injector nozzle were investigated: standard Valve Covered Orifice (VCO), modified minisac and new designed, unthrottled pintle. Preliminary results from engine tests proved that the optimum pilot fuel quantity is the minimum quantity. Based on that finding, the pilot FIS design was further optimized.
Technical Paper

Application of Digital, Pulse - Width - Modulated, Sonic Flow Injectors for Gaseous Fuels

1995-08-01
951912
Sonic flow, pulse-width-modulated electronic fuel injectors for gaseous fuels provide precise, stable and reliable service for over 1 billion cycles. Techniques for precision flow calibration are described along with dynamic response characteristics. Application techniques including pressure regulation, filtration and procedures for adjusting flow calibration for changes in gas pressure, temperature and composition are presented. Applications include single point (throttle body or mixer), multi-point constant flow and multipoint sequential strategies. Durability testing in parallel with a utility pipeline regulator fully conserves power and gaseous fuel in a simple, low cost, multiple injector test bank.
X