Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

Efficient Engine Models Using Recursive Formulation of Multibody Dynamics

2001-04-30
2001-01-1594
Engine models with fully coupled dynamic effects of the engine components can be constructed through the use of commercial multibody dynamics codes, such as ADAMS and DADS. These commercial codes provide a modeling platform for very general mechanical systems and the time and effort required to learn how to use them may preclude their use for some engine designers. In this paper, we review an alternative and specialized modeling platform that functions as a template for engine design. Relative to commercial codes, this engine design template employs a recursive formulation of multibody dynamics, and thus it leads directly to the minimum number of equations of motion describing the dynamic response of the engine by a priori satisfaction of kinematic constraints. This is achieved by employing relative coordinates in lieu of the absolute coordinates adopted in commercial multibody dynamics codes. This engine modeling tool requires only minimal information for the input data.
X