Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

An Investigation into the Operating Mode Transitions of a Homogeneous Charge Compression Ignition Engine Using EGR Trapping

2004-06-08
2004-01-1911
While Homogeneous Charge Compression Ignition (HCCI) is a promising combustion mode with significant advantages in fuel economy improvement and emission reductions for vehicle engines, it is subject to a number of limitations, for example, hardware and control complexity, or NOx and NVH deterioration near its operating upper load boundary, diminishing its advantages. Conventional spark-ignition combustion mode is required for higher loads and speeds, thus the operating conditions near the HCCI boundaries and their corresponding alternatives in SI mode must be studied carefully in order to identify practical strategies to minimise the impact of the combustion mode transition on the performance of the engine. This paper presents the results of an investigation of the combustion mode transitions between SI and HCCI, using a combination of an engine cycle simulation code with a chemical kinetics based HCCI combustion code.
Technical Paper

Residual Gas Trapping for Natural Gas HCCI

2004-06-08
2004-01-1973
With the high auto ignition temperature of natural gas, various approaches such as high compression ratios and/or intake charge heating are required for auto ignition. Another approach utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process in natural gas. In the present work, the achievable engine load range is controlled by the degree of internal trapping of exhaust gas supplemented by intake charge heating. Special valve strategies were used to control the internal retention of exhaust gas. Significant differences in the degree of valve overlap were necessary when compared to gasoline operation at the same speeds and loads, resulting in lower amounts of residual gas observed. The dilution effect of residual gas trapping is hence reduced, resulting in higher NOx emissions for the stoichiometric air/fuel ratio operation as compared to gasoline.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

Effect of Intake Valves Timings on In-Cylinder Charge Characteristics in a DI Engine Cylinder with Negative Valve Overlapping

2008-04-14
2008-01-1347
This paper presents a computational investigation of the in-cylinder charge characteristics within a motored 4-valve direct injection HCCI engine cylinder with applied negative valve overlapping. Non-typical intake valve strategy was investigated; whereby the pair of intake valves was assumed to follow the same low-lift short-duration valve-lift profile but actuated at different timings. The phase of intake-valve-opening relative to that of exhaust-valve-closing was optimized in terms of pumping losses. The flow fields generated with such an intake valve strategy were compared to those produced in the same engine cylinder but with typical early and late intake-valve-timing. The computational results of such an approach showed modifications in the in-cylinder swirl and tumble motions during the intake and compression strokes.
Technical Paper

Effect of inlet valve timing on boosted gasoline HCCI with residual gas trapping

2005-05-11
2005-01-2136
With boosted HCCI operation on gasoline using residual gas trapping, the amount of residuals was found to be of importance in determining the boundaries of stable combustion at various boost pressures. This paper represents a development of this approach by concentrating on the effects of inlet valve events on the parameters of boosted HCCI combustion with residual gas trapping. It was found that an optimum inlet valve timing could be found in order to minimize NOx emissions. When the valve timing is significantly advanced or retarded away from this optimum, NOx emissions increase due to the richer air / fuel ratios required for stable combustion. These richer conditions are necessary as a result of either the trapped residual gases becoming cooled in early backflow or because of lowering of the effective compression ratio. The paper also examines the feasibility of using inlet valve timing as a method of controlling the combustion phasing for boosted HCCI with residual gas trapping.
Technical Paper

In-cylinder Flow with Negative Valve Overlapping - Characterised by PIV Measurement

2005-05-11
2005-01-2131
Negative valve overlapping is widely used for trapping residual burned gas within the cylinder to enable controlled Homogeneous Charge Compression Ignition (HCCI). HCCI has been shown as a promising combustion technology to improve the fuel economy and NOx emissions of gasoline engines. While the importance of in-cylinder flow in the fuel and air mixing process is recognised, the characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. This paper presents an investigation in an optical engine designed for HCCI combustion using EGR trapping. PIV techniques have been used to measure the in-cylinder flow field under motored conditions and a quantitative analysis has been carried out for the flow characterisation with comparison made against the flow in the same engine with conventional valve strategies for SI combustion.
Technical Paper

An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine

2005-05-11
2005-01-2129
The major characteristics of the combustion in Homogeneous Charge Compression Ignition (HCCI) engines, irrespective of the technological strategy used to enable the ‘controlled auto-ignition’, are that the mixture of fuel and air is preferably premixed and largely homogeneous. Ignition tends to take place simultaneously at multiple points and there is no bulk flame propagation as in conventional spark-ignition (SI) engines. This paper presents an experimental study of flame development in an optical engine operating in HCCI combustion mode. High resolution and high-speed charge coupled device (CCD) cameras were used to take images of the flame during the combustion process. Fuels include gasoline, natural gas (NG) and hydrogen addition to NG all at stoichiometric conditions, permitting the investigation of combustion development for each fuel. The flame imaging data was supplemented by simultaneously recorded in-cylinder pressure data.
Technical Paper

Modelling of HCCI Engines: Comparison of Single-zone, Multi-zone and Test Data

2005-05-11
2005-01-2123
This paper presents a modeling study of a gasoline HCCI engine using a single-zone and a multi-zone engine combustion models coupled with the CHEMKIN chemical kinetics solver for the closed part of the cycle. These combustion models are subsequently combined with a 1-D gas dynamics engine cycle simulation code which calculates the engine gas exchange to supply the boundary conditions for the in-cylinder simulation and also predicts engine performance. The simulated in-cylinder pressure history and charge composition at the time of exhaust valve opening are compared with the data from a parallel engine experimental project. Although the single-zone model is useful for parameter studies by predicting the trend of auto-ignition timing variations as the result of the effect of engine operating conditions, the matching of simulated and test data is good perhaps only if the mixture and temperature distributions in the cylinder are uniform.
Technical Paper

Applying boosting to gasoline HCCI operation with residual gas trapping

2005-05-11
2005-01-2121
The application of Homogeneous Charge Compression Ignition (HCCI) combustion to naturally aspirated engines has shown a much reduced usable load range as compared to spark ignition (SI) engines. The approach documented here applies inlet charge boosting to gasoline HCCI operation on an engine configuration that is typical for SI gasoline engines, in conjunction with residual gas trapping. The latter helps to retain the benefits of much reduced requirement for external heating. In the present work, the achievable engine load range is controlled by the level of boost pressure while varying the amount of trapped residual gas. In addition, it was found that there is a maximum amount of boost that can be applied without intake heating for any given amount of trapped residuals. NOx emissions decrease with increasing amounts of trapped residual.
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
Technical Paper

Operating Characteristics of a Homogeneous Charge Compression Ignition Engine with Cam Profile Switching - Simulation Study

2003-05-19
2003-01-1859
A single zone combustion model based on a chemical kinetic solver has been combined with a one-dimension thermo/gas dynamic engine simulation code to study the operating characteristics of a V6 engine in which Homogeneous Charge Compression Ignition (HCCI) operation (also referred to as ‘Controlled Auto-ignition” CAI) is enabled by a cam profile switching (CPS) system with negative valve overlap. An operational window within which HCCI combustion is possible has been identified and the limit of HCCI operating region for varied valve lift possibilities is explored. The mechanisms and potential fuel economy improvements within the HCCI envelope are studied and modelled results compared against data from similar engines. It is shown that for the best fuel economy the valve timing strategy needs to be selected very carefully, despite the engine's capability to operate at a range of valve timing combinations.
X