Refine Your Search

Topic

Search Results

Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

Computational Accuracy and Efficiency of the Element Types and Sizes for Car Acoustic Finite Element Model

2014-04-01
2014-01-0890
Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes.
Technical Paper

Active Noise Control Method Considering Auditory Characteristics

2012-04-16
2012-01-0993
In contrast to functionality and reliability, which are more and more assumed to be a natural and necessary condition of any vehicle, the performance of Noise, Vibration and Harshness (NVH) now belongs to those features which play an essential role for the customer's purchasing decision. Sound design and vehicle interior noise control are essential parts of NVH. One tool of the NVH solution toolbox is Active Noise Control (ANC). ANC technology aims to cancel unwanted noise by generating an “anti-noise” with equal amplitude and opposite phase. Owing to the fact that human hearing has selective sensitivity for different critical bands, a new control strategy of ANC, which selectively controls the noise of specific bandwidths according to the result of specific loudness and retains the part of noise created by the normal running of facilities, trying to attenuate the unwanted and unacceptable noise, has been proposed in this paper.
Technical Paper

Structure Optimization and Interior Noise Reduction of Commercial Vehicle Cab

2012-09-24
2012-01-1928
In order to improve ride comfort and reduce interior noise of commercial vehicles, modal sensitivity analysis and optimization design of a commercial vehicle cab was carried out, which increased the first natural frequency of the optimized cab by 23.96%. The result of cab modal test verified the correctness of the finite element model and the effectiveness of the improving method. The structure-acoustic coupling model of the cab was established, and the acoustic response of the coupled sound field was predicted. The sound pressure level of the optimized cab was reduced. In comparison of the optimized cab with the original one, the optimization scheme was confirmed to be effective and reasonable.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Technical Paper

The Integrated Control of SBW and 4WS

2007-08-05
2007-01-3674
Steer-by-wire System is a new conception for steering system, which eliminates those mechanical linkages between hand steering wheel and front wheels, and communicates among the driver and wheels by signals and controllers. All these facilities improve the safety and conformability of the vehicle system and get rid of the mechanical constricts. This paper proposed three vehicle stability control strategies, including front wheel control, yaw rate feedback control and yaw rate& acceleration feedback control. We compared these three control methods by simulation and simulator tests. We also studied the integrated control algorithm of Steer-by-Wire System and 4WS, and compared with 2WS for SBW and the classical 4WS.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

Support Vector Machine Theory Based Shift Quality Assessment for Automated Mechanical Transmission (AMT)

2007-04-16
2007-01-1588
In China there is a strong trend in the application of vehicles equipped with automatic transmissions in considering the complexity of traffic and the convenience of automatic transmissions. As a type of automatic transmission, automated mechanical transmission (AMT) shows great potential to be developed as a main transmission because of its simple structures, easy upgrade from manual transmission (MT) and low price. Support Vector Machine (SVM) is a new statistic method which could make a good prediction with limited training instances. Compared with Artificial Neutral Network (ANN), SVM can provide better genetic ability. In order to verify the ability of the new method, the model trained by one set of AMT car data was applied on some other AMT vehicles, and the predicted results were compared with subjective rating results by expert drivers and analyzed to identify the potential of this new assessment system.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

Vehicle Occupant Posture Classification System using Seat Pressure Sensor for Intelligent Airbag

2009-04-20
2009-01-1254
In the intelligent airbag system, the detection accuracy of occupant position is the precondition and plays a vital role to control airbag detonation time and inflated strength during the crash. Through accurately analyzing the seat surface pressure distributions of different occupant sitting position and types, an occupant position recognition approach which purely uses occupant pressure distribution information measured by seat pressure sensors is presented with the method of Support Vector Machine. In the end, the distribution samples with different occupant sitting position and types are used to train and test the recognition approach, and the good validity and accuracy are shown in the experiments.
Technical Paper

Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering

2004-03-08
2004-01-1107
Electric Power-Assisted Steering (EPAS) is a new power steering technology that will define the future of vehicle steering. The assist of EPAS is the function of the steering wheel torque and vehicle velocity. The assist characteristic of EPAS is set by control software, which is one of the key issues of EPAS. The straight-line type assist characteristic has been used in some current EPAS products, but its influence on the steering maneuverability and road feel hasn't been explicitly studied in theory. In this paper, the straight-line type assist characteristic is analyzed theoretically. Then a whole vehicle dynamic model used to study the straight-line type assist characteristic is built with ADAMS/Car and validated with DCF (Driver Control Files) mode of ADAMS/Car. Based on the whole vehicle dynamic model, the straight-line type assist characteristic's influence on the steering maneuverability and road feel is investigated.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

2005-04-11
2005-01-1597
To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

2002-11-18
2002-01-3093
Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

Parametric Design of Series Hybrid Power-train for Transit Bus

2003-11-10
2003-01-3371
Utilizing the developed off-line simulation model of series hybrid power train the study on the influence of components' parameters on acceleration performance and fuel economy of transit bus is completed. Based on these the guideline strategies of parametric design of series hybrid power train for transit bus are brought forward in this paper. Given the condition of propulsion requirement the parametric design for this transit bus are performed targeting minimizing fuel consumption. It is conclusion that the appropriate components' parameters determined by means of parametric design can make series hybrid transit bus achieve much better acceleration performance and much lower fuel equivalent consumption than that of baseline transit bus.
Technical Paper

Performance Analysis of Multi-Speed Torque Coupler for Hybrid Electric Vehicle

2016-04-05
2016-01-1149
A novel torque-coupling architecture for hybrid electric vehicles is proposed. The torque-coupling device is based on automated manual transmission (AMT), which is highly efficient and provides six gears for the engine and three gears for each motor to enable the engine and the motors to work at high-efficiency levels in most cases. The proposed power-shift AMT (P-AMT) does not have a hydraulic torque converter and wet clutches, which dampen the driveline shock. Thus, the drivability control of the P-AMT becomes a challenging issue. Accurate engine, motor model and transmission model have been built and the dynamic control of the gear shift process of PAMT in hybrid mode is simulated. The electric motors compensate for the traction loss during the gear shift of the engine.
X