Refine Your Search



Search Results

Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Study on the Straight-line Running Stability of the Four-wheel Independent Driving Electric Vehicles

The motor errors of the four-wheel independent driving electric vehicles was studied, and classified as steady errors and dynamic errors. In the paper, the forward compensation control and the PID control strategy were respectively applied to compensate for the errors. The electric vehicles straight-line running stability caused by the motor errors was discussed, the PID control method based on BP neural net work was presented to co-ordinate torque of the wheels. The result of the simulation on the 7 degrees of freedom vehicle model showed that control method improved the straight-line running ability of the vehicle.
Technical Paper

The Research on Fuzzy Logic Control Strategy of Synergic Electric System of Hybrid Electric Vehicle

Supercapacitor has the merits of low resistance and long lifecycle ability. When combined with battery, they can alleviate the burthen of battery, increase the battery's working efficiency and prolong its lifecycle. This paper introduces a control architecture based on balancing of SOC and algorithm based on fuzzy logic, Aiming at the two different cycles that have sufficient and insufficient energy that can be recovered from braking unlikely, this paper puts forward the methods of on-line adjusting fuzzy control parameters. Consequently, simulation was performed,and the results validate the effective adapting capacity of the control logic under different driving cycles.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

A Study of Calculation Method of Wheel Speed and Wheel Angular Acceleration Based on dSPACE Rapid Control Prototyping in Modern Automotive Control Systems

One of the key technologies of automotive active safety systems is to calculate the wheel speed and wheel angular acceleration or deceleration. Obtaining an accurate control quantity is the prerequisite for active safety systems no matter what control logics are used to realize the control function. This paper puts forward a new wheel speed processing algorithm. This method was simulated in MATLAB \ Simulink. Then it was tested in a certain type of vehicle of FAW by applying dSPACE RCP. It proves that this algorithm assures the precision at high and low speed and the real-time performance at low speed.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Structure Optimization and Interior Noise Reduction of Commercial Vehicle Cab

In order to improve ride comfort and reduce interior noise of commercial vehicles, modal sensitivity analysis and optimization design of a commercial vehicle cab was carried out, which increased the first natural frequency of the optimized cab by 23.96%. The result of cab modal test verified the correctness of the finite element model and the effectiveness of the improving method. The structure-acoustic coupling model of the cab was established, and the acoustic response of the coupled sound field was predicted. The sound pressure level of the optimized cab was reduced. In comparison of the optimized cab with the original one, the optimization scheme was confirmed to be effective and reasonable.
Technical Paper

Finite Element Analysis of Light Vehicle Cab's Hydraulic Mount Based on Fluid-Structure Interaction Method

Hyperelastic model constants of rubber material are predicted based on test date. The fluid-structure interaction model of light vehicle cab's hydraulic mount is established. Static characteristics of the hydraulic mount are analyzed by quasi-static method. In dynamic characteristics analysis, the flow model of fluid is set to turbulent K-Epsilon RNG. The dynamic stiffness and loss angle of the hydraulic mount are presented via the finite element model. The simulations of static and dynamic characteristics agree well with corresponding test results. The effects of main structure parameters to the dynamic characteristics of the hydraulic mount are analyzed based on the finite element model.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Mode Transition Dynamic Control for Dual-Motor Hybrid Driving System

Coordinated control of mode transition is an important part of the multi-mode hybrid vehicles' control strategy, combined with a vehicle torque distribution strategy to realize an optimal working condition of the power sources, as well as achieve smooth mode switching. This paper builds hybrid electric vehicle driveline dynamics model and depth analyzes drive mode transition process, coordinated control methods were provided to solve three types of mode switching, neural network algorithm was provided to estimate the engine torque. The results show that coordinated control can reduce torque fluctuations and decrease jerk during the transition of different modes to improve the vehicle drivability.
Technical Paper

The Effect of Multi-Universal Coupling Phase on Torsional Vibration of Drive Shaft and Vibration of Vehicle

Torsional vibration of drive shaft has great influence on the vibration of vehicle. Reasonable phase arrangement of multi-universal coupling can attenuate vibration. In this paper, theoretical model of drive shaft with planar multi-cross universal coupling was established; the optimization scheme of the phase arrangement of multi-cross universal coupling was presented. The results of test validation and simulation show that the optimization scheme is effective and reasonable. The results of test validation and simulation show that the optimization scheme was effective and reasonable and the optimized scheme could solve the abnormal vibration on floor. Arranging phases of universal joints reasonably is very significative for attenuate the torsional vibration of drive shaft and the floor vibration.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Studies on Steering Feeling Feedback System Based on Nonlinear Vehicle Model

The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.