Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Experimental Investigations of a DISI Engine in Transient Operation with Regard to Particle and Gaseous Engine-out Emissions

2015-09-01
2015-01-1990
The investigation of transient engine operation plays a key role of the future challenges for individual mobility in terms of real driving emissions (RDE). A fundamental investigation of the transient engine operation requires the simultaneous application of measurement technologies for an integrated study of mixture formation, combustion process and emission formation. The major prerequisite is the combustion cycle and crank angle resolved analysis of the process for at least several individual consecutive combustion cycles during transient operation. The investigations are performed with a multi cylinder DISI engine at an Engine-in-the-Loop test bench, able to operate the engine in driving cycles as well as within target profiles (e.g. speed and torque profiles). The research project describes the methodology of analyzing elementary transient operational phases, (e.g. different variants of load steps).
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Journal Article

Effect of different nozzle geometries using Pure Rapeseed Oil in a modern Diesel engine on combustion and exhaust emissions

2011-08-30
2011-01-1947
Rapeseed oil can be a possible substitute for fossil fuel in Diesel engines. Due to different physical properties of rapeseed oil like higher viscosity and higher compressibility compared to diesel fuel, rapeseed oil cannot be easily used in conventional Diesel engines without modifications. Especially incomplete combustion leads to deposits in the combustion chamber and higher exhaust gas emissions. These unfavorable characteristics are caused primarily by insufficient mixture preparation. The adjustment of the injection system will improve the mixture preparation and the combustion of a Diesel engine, operated with rapeseed oil. The nozzle geometry is the main parameter of the whole injection system chain to realize a better combustion process and so higher efficiency and lower exhaust gas emissions.
Technical Paper

Use of Ceramic Components in Sliding Systems for High-Pressure Gasoline Fuel Injection Pumps

2010-04-12
2010-01-0600
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Investigations of Ignition Processes Using High Frequency Ignition

2013-04-08
2013-01-1633
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
Technical Paper

Comparison of the Emission Behaviour and Fuel Consumption of a Small Two-Stroke SI Chainsaw under Test-Bed- and Real In-Use Conditions

2012-10-23
2012-32-0070
The emission behaviour of an internal combustion engine under test-bed conditions shows differences to the emission behaviour under real in-use conditions. Because of this fact, the developers of combustion engines and the legislator are focussing on the measurement and optimization of real in-use emissions. To this day, the research, the adjustment of the carburettor and the legislation of small handheld engines is performed under test bench conditions, especially conditioned fuel pressure and temperature, as well as air temperature. Also the engines are laid out for two operation points: rated speed with full open throttle and idle speed. This test-procedure is used for all kinds of handheld off-road applications and does not consider the load profile of the different power tools. Especially applications with transient load profiles, for example chainsaws, work in more than two operating points in real use.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
X