Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation Study of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Propane

2014-04-01
2014-01-1104
A simulation study was conducted to examine the transition from SI combustion to HCCI combustion in a two-stroke free piston engine fuelled with propane. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. The dynamic model included an analysis of the piston motion, based on Newton's second law. The linear alternator model included an analysis of electromagnetic force, which was considered to be a resistance force for the piston motion. The thermodynamic model was used to analysis thermodynamic processes in the engine cycle, including scavenging, compression, combustion, and expansion processes. Therein, the scavenging process was assumed to be a perfect process. These mathematical models were combined and solved by a program written in Fortran.
Technical Paper

Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines Based on Multi-Zone Modeling and Experiments by using RCM

2013-10-15
2013-32-9083
The charge stratification has been thought as one of the ways to reduce the sharp pressure rises of HCCI combustion. The objective of this study is to evaluate the potential of equivalence ratio, initial temperature, and EGR gas stratifications for reducing pressure-rise rate of HCCI combustion. Using rapid compression machine, the stratified pre-mixture is charged, and compressed to analyze the change of in-cylinder gas pressure and temperature traces during compression process. Based on the experiment results, numerical calculations by CHEMKIN are conducted to more specifically analyze the potential of equivalence ratio, initial temperature, and EGR gas stratifications on the reduction of pressure rise rate. Multi-zone model is used to simulate the thermal stratification, fuel stratification and EGR gas stratification of in-cylinder charge as like real engine.
X