Refine Your Search

Topic

Search Results

Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Technical Paper

Analysis of a Frontal Impact of a Formula SAE Vehicle

2006-12-05
2006-01-3627
The objective of this study was to determine risk of injury to the driver during a frontal impact in a Formula SAE vehicle. Formula SAE is a collegiate student design competition where every year universities worldwide build and compete with open-wheel formula-style race cars. Formula SAE 2006 rules stipulate the use of an impact attenuator to absorb energy in the event of a frontal impact. These rules mandated an average deceleration not to exceed 20-g from a speed of 7.0 m/s (23 ft/s), but do not specify a specific time or pulse shape of the deceleration. The pulse shapes tested in this study included an early high-g, constant-g, and late high-g pulse. The tests were performed using the deceleration sled at the Kettering University Crash Safety Center. Using industry standard practices, this study examined the driver's risk of injury with regard to neck and femur loads, head and chest accelerations, as well as kinematic analysis using high speed video.
Technical Paper

External Knee Geometry Surface Variation as a Function of Subject Anthropometry and Flexion Angle for Human and Surrogate Subjects

2007-04-16
2007-01-1162
The current study was designed to compare the surface anatomy of the knee for different human subject anthropometries using a 3-D, non-contact digitizer which converted the anatomy into point clouds. The subjects were studied at flexion angles of 60, 90, and 120 degrees. Multiple subjects fitting narrow anthropometrical specifications were studied: 5th percentile female, 50th percentile male, and 95th percentile male. These data were then compared to a corresponding anthropometrical crash dummy knee which served as an unambiguous control. Intersubject human comparisons showed surface geometry variations which were an order of magnitude smaller than comparisons between the human and dummy knee. Large errors between the human and dummy were associated with the muscle bulk proximal and distal to the popliteal region and the rounder shape of the human knee.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
Technical Paper

Kettering University's 2003 Design for the Clean Snowmobile Challenge

2003-09-15
2003-32-0076
Kettering University's entry in the 2003 Clean Snowmobile Challenge entails the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Analysis of Rollover Injuries for 125 Occupants at a Single Trauma Center With Special Focus on Head and Neck Injury

2004-03-08
2004-01-0321
Analysis of the National Automotive Sampling System (NASS) data reveals that vehicle rollover accidents account for a relatively a small number of accidents, but the associated frequency of serious injury is high compared to frontal or side impact. These data demonstrate the apparently elevated probability of head and neck injury during rollover, with head injury occurring more frequently, injured 4.5 times more frequently than the neck when considering all injuries. Automotive industry researchers have performed numerous rollover tests with instrumented ATD's and have predicted an elevated probability of neck injury with little chance of head injury. This contradicts field data (NASS-CDS) which suggests a high frequency of head injury with little chance of neck injury. This difference may be explained in part, through the different volumes of data presented in the literature.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
Technical Paper

Towards A Definition of A Test Methodology for Rollover Resistance and Rollover Performance

2004-03-08
2004-01-0736
A variety of test methodologies currently exist to assess the propensity of a vehicle to roll laterally, the vehicle performance during a rollover event, and the associated risk of injury to the occupant. There are indications as to which tests are appropriate when attempting to replicate rollover events observed in the field. Due to the complexity of a rollover, test repeatability is a concern as well as cost, and field relevance. Since revisions to governmental rollover regulations are currently being considered, an assessment of currently available rollover test methodologies would provide a context to compare the different experimental designs. Additionally, the design of injury prevention strategies such as side air curtains, 4-point belts, etc. will also require the establishment of repeatable, robust, and economical test methods.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

Kettering University's Design of an Automotive Based Four-Stroke Powered Clean Snowmobile

2002-10-21
2002-01-2757
Kettering University's entry in the 2002 Clean Snowmobile Challenge involves the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Development of Clean Snowmobile Technology for the 2005 SAE Clean Snowmobile Challenge

2005-10-24
2005-01-3679
Kettering University's Clean Snowmobile Challenge student design team has developed a new robust and innovative snowmobile for the 2005 competition. This snowmobile dramatically reduces exhaust and noise emissions and improves fuel economy compared with a conventional snowmobile. Kettering University has utilized a modified snowmobile in-line four cylinder, four-stroke, engine. The team added an electronically-controlled fuel-injection system with oxygen sensor feedback to this engine. This engine has been installed into a 2003 Yamaha RX-1 snowmobile chassis. Exhaust emissions have been further minimized through the use of a customized catalytic converter and an electronically controlled closed-loop fuel injection system. A newly designed and tuned exhaust as well as several chassis treatments have aided in minimizing noise emissions.
Technical Paper

External Flow Analysis of a Truck for Drag Reduction

2000-12-04
2000-01-3500
Aerodynamics of trucks and other high sided vehicles is of significant interest in reducing road side accidents due to wind loading and in improving fuel economy. Recognizing the limitations of conventional wind tunnel testing, considerable efforts have been invested in the last decade to study vehicle aerodynamics computationally. In this paper, a three-dimensional near field flow analysis has been performed for axial and cross wind loading to understand the airflow characteristics surrounding a truck-like bluff body. Results provide associated drag for the truck geometry including the exterior rearview mirror. Modifying truck geometry can reduce drag, improving fuel economy.
Technical Paper

Physical Validation Testing of a Smart Tire Prototype for Estimation of Tire Forces

2018-04-03
2018-01-1117
The safety of ground vehicles is a matter of critical importance. Vehicle safety is enhanced with the use of control systems that mitigate the effect of unachievable demands from the driver, especially demands for tire forces that cannot be developed. This paper presents the results of a smart tire prototyping and validation study, which is an investigation of a smart tire system that can be used as part of these mitigation efforts. The smart tire can monitor itself using in-tire sensors and provide information regarding its own tire forces and moments, which can be transmitted to a vehicle control system for improved safety. The smart tire is designed to estimate the three orthogonal tire forces and the tire aligning moment at least once per wheel revolution during all modes of vehicle operation, with high accuracy. The prototype includes two in-tire piezoelectric deformation sensors and a rotary encoder.
Technical Paper

Using Digital Image Correlation to Measure Dynamics of Rolling Tires

2018-04-03
2018-01-1217
Vehicles are in contact with the road surface through tires, and the interaction at the tire-road interface is usually the major source of vibrations that is experienced by the passengers in the vehicle. Thus, it is critical to measure the vibrational characteristics of the tires in order to improve the safety and comfort of the passengers and also to make the vehicle quieter. The measurement results can also be used to validate numerical models. In this paper, Digital Image Correlation (DIC) as a non-contact technique is used to measure the dynamics of a racing tire in static and rolling conditions. The Kettering University FSAE car is placed on the dynamometer machine for this experiment. A pair of high-speed cameras is used to capture high-resolution images of the tire in a close-up view. The images are processed using DIC to obtain strain and displacement of the sidewall of the tire during rolling. The experiment is performed for various testing speeds.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
X