Refine Your Search

Topic

Author

Search Results

Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

Development of Clean Snowmobile Technology for the 2006 SAE Clean Snowmobile Challenge

2006-11-13
2006-32-0051
Kettering University's entry for the 2006 Clean Snowmobile challenge utilizes a Polaris FST Switchback. This snowmobile having a two cylinder, four-stroke engine has been modified to run on ethanol (E-85). The student team has designed and built a new exhaust system which features customized catalytic converters to minimize engine out emissions. A number of improvements have been made to the track to reduce friction and diminish noise.
Technical Paper

External Knee Geometry Surface Variation as a Function of Subject Anthropometry and Flexion Angle for Human and Surrogate Subjects

2007-04-16
2007-01-1162
The current study was designed to compare the surface anatomy of the knee for different human subject anthropometries using a 3-D, non-contact digitizer which converted the anatomy into point clouds. The subjects were studied at flexion angles of 60, 90, and 120 degrees. Multiple subjects fitting narrow anthropometrical specifications were studied: 5th percentile female, 50th percentile male, and 95th percentile male. These data were then compared to a corresponding anthropometrical crash dummy knee which served as an unambiguous control. Intersubject human comparisons showed surface geometry variations which were an order of magnitude smaller than comparisons between the human and dummy knee. Large errors between the human and dummy were associated with the muscle bulk proximal and distal to the popliteal region and the rounder shape of the human knee.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

Development of Clean Snowmobile Technology for Operation on High-Blend Ethanol for the 2008 Clean Snowmobile Challenge

2008-09-09
2008-32-0053
Clean snowmobile technology has been developed using methods which can be applied in the real world with a minimal increase in cost. Specifically, a commercially available snowmobile using a two cylinder, four-stroke engine has been modified to run on high-blend ethanol (E-85) fuel. Additionally, a new exhaust system which features customized catalytic converters and mufflers to minimize engine noise and exhaust emissions has developed. Finally, a number of additional improvements have been made to the track to reduce friction and diminish noise. The results of these efforts include emissions reductions of 94% when compared with snowmobiles operating at the 2012 U.S. Federal requirements.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
Technical Paper

Kettering University's 2003 Design for the Clean Snowmobile Challenge

2003-09-15
2003-32-0076
Kettering University's entry in the 2003 Clean Snowmobile Challenge entails the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
Technical Paper

Numerical Simulations in a High Swirl Methanol-Fueled Directly-Injected Engine

2003-10-27
2003-01-3132
Three-dimensional transient simulations using KIVA-3V were conducted on a 4-stroke high-compression ratio, methanol-fueled, direct-injection (DI) engine. The engine had two intake ports that were designed to impart a swirling motion to the intake air. In some cases, the intake system was modified, by decreasing the ports diameter in order to increase the swirl ratio. To investigate the effect of adding shrouds to the intake valves on swirl, two sets of intake valves were considered; the first set consisted of conventional valves, and the second set of valves had back shrouds to restrict airflow from the backside of the valves. In addition, the effect of using one or two intake ports on swirl generation was determined by blocking one of the ports.
Technical Paper

Multidimensional Predictions of Methanol Combustion in a High-Compression DI Engine

2003-10-27
2003-01-3133
Numerical simulations of lean Methanol combustion in a four-stroke internal combustion engine were conducted on a high-compression ratio engine. The engine had a removable integral injector ignition source insert that allowed changing the head dome volume, and the location of the spark plug relative to the fuel injector. It had two intake valves and two exhaust ports. The intake ports were designed so the airflow into the engine exhibited no tumble or swirl motions in the cylinder. Three different engine configurations were considered: One configuration had a flat head and piston, and the other two had a hemispherical combustion chamber in the cylinder head and a hemispherical bowl in the piston, with different volumes. The relative equivalence ratio (Lambda), injection timing and ignition timing were varied to determine the operating range for each configuration. Lambda (λ) values from 1.5 to 2.75 were considered.
Technical Paper

Design and Development of a Cylindrical HVAC Case

2004-03-08
2004-01-1385
There are many opportunities in a current automotive HVAC case for improved performance, and cost savings. Based on these opportunities, a new HVAC case design has been developed. This new design is smaller and lighter than current cases while meeting many of the performance requirements. The case also features a unique plenum design for air distribution to the three modes, panel, floor, and defrost. The results of simulation and laboratory testing confirmed the concept of the new HVAC design.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

External Flow Analysis Over a Car to Study The Influence of Different Body Profiles Using CFD

2001-10-16
2001-01-3085
A vehicle’s performance and fuel economy plays an important role in obtaining a larger market share in the segment. This can be best achieved by optimizing the aerodynamics of the vehicle. Aerodynamics can be improved by altering the bodylines on a vehicle. Its drag coefficient can be maintained at a minimum value by properly designing various component profiles. The stability of a vehicle and Passenger comfort are affected by wind noise that is related to the aerodynamics of a vehicle. To study the effects of the above-mentioned parameters, the vehicle is tested inside a wind tunnel. In this paper, the authors study the body profile for different vehicles and analyze them using Computational Fluid Dynamics software - FLUENT. To study the influence of different body profiles on drag coefficient, 3 different vehicle segments are considered.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Technical Paper

Kettering University's Design of an Automotive Based Four-Stroke Powered Clean Snowmobile

2002-10-21
2002-01-2757
Kettering University's entry in the 2002 Clean Snowmobile Challenge involves the installation of a fuel injected four-stroke engine into a conventional snowmobile chassis. Exhaust emissions are minimized through the use of a catalytic converter and an electronically controlled closed-loop fuel injection system, which also maximizes fuel economy. Noise emissions are minimized by the use of a specifically designed engine silencing system and several chassis treatments. Emissions tests run during the SAE collegiate design event revealed that a snowmobile designed by Kettering University produces lower unburned hydrocarbon (1.5 to 7 times less), carbon monoxide (1.5 to 7 times less), and oxides of nitrogen (and 5 to 23 times less) levels than the average automobile driven in Yellowstone National Park. The Kettering University entry also boasted acceleration performance better than the late-model 500 cc two-stroke snowmobile used as a control snowmobile in the Clean Snowmobile testing.
Technical Paper

Application of Bond Graph Technique and Computer Simulation to the Design of Passenger Car Steering System

2002-03-04
2002-01-0617
Vehicle Dynamics play an important role in responsiveness of a vehicle. The performance of a vehicle depends on its ride and handling characteristics [1]. Handling is a measure of the directional response of a vehicle and one of the important characteristics from the vehicle dynamics point of view. The directional response of a vehicle depends on the dynamics of the steering system. A good steering control provides an accurate feedback about how the vehicle reacts to the road. In this paper, the powerful techniques of Bond graphs and state equations [2] are used to design and analyze the dynamics of a manual rack and pinion steering system. The author obtains the transfer function between the Angle of rotation of front tire and the Angle of rotation of steering wheel. The overall steering ratio of the bond graph modeled steering system is compared with the overall ratio of a similar vehicle to validate the model.
Technical Paper

Analysis of a 4-DOF Vehicle Model Using Bond Graph and Lagrangian Technique

2002-03-04
2002-01-0809
Bond graph modeling is a powerful technique to study the complex interactions occurring between various components in a system. A few investigations were carried out to study vehicle dynamics using Bondgraphs, but are limited to 2 degree of freedom systems [1,2&3]. In this work, a 4-DOF-vehicle model was developed using bond graphs. A frequency response analysis was also carried out to study the natural frequencies. This model was later validated using Lagrangian principles. The results correlated well for a typical passenger car using the manufacturer supplied information available in the public domain.
X