Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Technical Paper

Influence of Coating Microstructure on the Fatigue Properties of Zinc Coated Sheet Steels

1998-02-23
980955
The influence of coatings on fatigue behavior has been examined for the following commercially produced sheet steels: uncoated titanium stabilized interstitial-free (IF); electrogalvanized titanium stabilized IF; hot-dip galvanized aluminum killed, drawing quality (AKDQ); and galvannealed AKDQ. Fully reversed bending fatigue tests were conducted at ambient temperature on Krouse-type flexural fatigue machines. A dependence of crack development was observed and correlated to the microstructure and properties of the different coatings. Furthermore, a functional design relationship for each material was determined through stress-life analysis. The experimentally determined fatigue properties were compared to conventional estimates based on tensile properties which ignore coating effects. The results of this work suggest that ductile coatings may enhance fatigue resistance, while brittle coatings may reduce fatigue life.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

Bending Fatigue Performance of Carburized 4320 Steel

1993-03-01
930963
The bending fatigue performance of four heats of carburized, commercially-produced SAE 4320 steel was evaluated. Simulated gear tooth in bending (SGTB) cantilever beam specimens from each heat were identically carburized and fatigue tested in the direct quenched condition after carburizing. The microstructure and fracture surfaces of all specimens were characterized with light and electron microscopy. The four direct quenched sets of specimens performed similarly in low cycle fatigue. Endurance limits among the direct quenched specimens ranged between 1100 and 1170 MPa (160 and 170 ksi) and intergranular cracking dominated fatigue crack initiation. An additional set of specimens from one of the heats was reheated after carburizing. The fatigue performance of the reheated specimens was superior to that of the direct quenched specimens in both the low and high cycle regions. The effects of inclusion content, microstructure, and residual stresses on fatigue performance are discussed.
Technical Paper

The Effect of Reheat Treatments on Fatigue and Fracture of Carburized Steels

1994-03-01
940788
The effects of austenite grain size on the bending fatigue crack initiation and fatigue performance of gas carburized, modified 4320 steels were studied. The steels were identical in composition except for phosphorus concentration which ranged between 0.005 and 0.031 wt%. Following the carburizing cycle, specimens were subjected to single and triple reheat treatments of 820°C for 30 minutes to refine the austenite grain structure, and oil quenched and tempered at 150°C. Specimens subjected to bending fatigue were characterized by light metallography to determine microstructure and grain size, X-ray analysis for retained austenite and residual stress measurements, and scanning electron microscopy for examination of fatigue crack initiation and propagation. The surface austenite grain size ranged from 15 μm in the as-carburized condition to 6 and 4 μm diameter grain size for the single and triple reheat conditions, respectively.
Technical Paper

Investigation of the Effect of Sample Size on Fatigue Endurance Limit of a Carburized Steel

2006-04-03
2006-01-0539
Prediction of fatigue performance of large structures and components is generally done through the use of a fatigue analysis software, FEA stress/strain analysis, load spectra, and materials properties generated from laboratory tests with small specimens. Prior experience and test data has shown that a specimen size effect exists, i.e. the fatigue strength or endurance limit of large members is lower than that of small specimens made of same material. Obviously, the size effect is an important issue in fatigue design of large components. However a precise experimental study of the size effect is very difficult for several reasons. It is difficult to prepare geometrically similar specimens with increased volume which have the same microstructures and residual stress distributions throughout the entire material volume to be tested. Fatigue testing of large samples can also be a problem due to the limitation of load capacity of the test systems available.
Technical Paper

Examination of Pitting Fatigue in Carburized Steels with Controlled Retained Austenite Fractions

2006-04-03
2006-01-0896
The effects of several variables on pitting fatigue life of carburized steels were analyzed using a geared roller test machine (GRTM). The material variables that were primarily used to influence retained austenite include aim surface carbon concentration (0.8 % and 0.95 %), alloy (SAE 4320 and a modified SAE 4122), and cold treatment (performed on one material condition per alloy). Testing variables included contact stress in addition to a variation in lambda ratio (oil film thickness/surface roughness), arising from variation in roughness among the machined surfaces. Test results are presented, and differences in performance are considered in terms of material and testing variables. A primary observation from these results is an improvement in contact fatigue resistance apparently arising from cold-treatment and the associated reduction of retained austenite at the surface.
Technical Paper

Effects of Testing Temperature on the Fatigue Behavior of Carburized Steel

2005-04-11
2005-01-0986
The effects of elevated testing temperature on the fatigue behavior of carburized steel were evaluated by testing modified Brügger bending fatigue specimens at room temperature, 90 °C and 150 °C. SAE 4023, SAE 4320, and SAE 9310 steel were studied to assess the influence of alloy content and stability of retained austenite. Fatigue samples were gas-carburized and tested in air at 30 Hz with a stress ratio of 0.1. An infrared spot lamp was used to heat samples to 90 °C (150 °F) or 150 °C (302 °F) during testing. S-N curves were developed for the room temperature baseline tests as well as elevated temperature tests. The endurance limits determined are as follows: SAE 4023-RT (1170 MPa), SAE 4023-90°C (1140 MPa), SAE 4320-RT (1210 MPa), SAE 4320-90°C (1280 MPa), SAE 9310-RT (1380 MPa), SAE 9310-90°C (1240 MPa).
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Bending Fatigue Performance of Gas- and Plasma-Carburized Steels

1999-03-01
1999-01-0602
This study evaluated the bending fatigue performance of a modified SAE 4320 steel as a function of carburizing technique. S-N curves and endurance limits were established by fatigue testing modified Brugger-type specimens that are designed to simulate a single gear tooth. Fractured specimens were examined by light and electron microscopy to determine crack initiation sites, establish the extent of stable crack propagation, and analyze surface oxide types and distributions. Test results show that plasma-carburizing boosted the endurance limit of an oxidation-susceptible gear steel from 1100 MPa to 1375 MPa. Fatigue endurance limits in excess of 1400 MPa had previously been achieved in gas-carburized SAE 4320 steels by reheat treatments and reductions in high-oxidation potential elements. The level of improvement observed in this study suggests that any of these advanced processing techniques can allow significant size reductions and weight savings in automotive transmission gears.
Technical Paper

Fatigue of Microalloyed Bar Steels

2000-03-06
2000-01-0615
The fatigue behavior of five microalloyed steels, processed with hardnesses between 25-28 HRC containing microstructures ranging from precipitation-hardened ferrite-pearlite to bainite, were evaluated in both low cycle (strain controlled) and high cycle (stress controlled fatigue. The vanadium-bearing steels included, 15R30V, 1522 MoVTi, 1522 MoVTiS, 1534 MoVTi, and 1534 MoVTiSi. Conventional quench and tempered 4140 steel was used as a reference. Low cycle fatigue (LCF) data for all steels were similar. Subtle microstructural-dependent differences in the high-strain amplitude region of the LCF curves were attributed to the effects of retained austenite, present in some of the non-traditional bainitic steels. In high cycle fatigue, all steels exhibited similar properties, except for the ferrite-pearlite steel (15R30V) which exhibited the lowest endurance limit, an observation which was attributed to crack nucleation in coarse-grained ferrite.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
X