Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Technical Paper

Initial Assessment of the Next-Generation USA Frontal NCAP: Fidelity of Various Risk Curves for Estimating Field Injury Rates of Belted Drivers

2009-04-20
2009-01-0386
Various frontal impact risk curves were assessed for the next-generation USA New Car Assessment Program (NCAP). Specifically, the “NCAP risk curves” — those chosen by the government for the 2011 model year NCAP — as well as other published risk curves were used to estimate theoretically the injury rates of belted drivers in real-world frontal crashes. Two perspectives were considered: (1) a “point” estimate of NCAP-type events from NCAP fleet tests, and (2) an “aggregate” estimate of 0 ≤ ΔV ≤ 56 km/h crashes from a modeled theoretical vehicle whose NCAP performance approximated the average of the studied fleet. Four body regions were considered: head, neck, chest, and knee-thigh-hip complex (KTH). The curve-based injury rates for each body region were compared with those of real-world frontal crashes involving properly-belted adult drivers in airbag-equipped light passenger vehicles. The assessment yielded mixed results.
Technical Paper

A Side Impact Taxonomy for USA Field Data

2018-04-03
2018-01-1331
An eleven-group taxonomy was created to classify real-world side crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the classification scheme: (1) side-impact towaway crashes were identified by examining 1987-2016 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1997-2015 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eleven-group taxonomy; and (3) taxonomic groups were reviewed relative to regulated crash test procedures. Two of the taxonomic groups were found to have the most frequent crash types, each contributing approximately 22% to the total, followed closely by a third taxonomic group contributing approximately 19%.
Journal Article

Estimation of the Relative Roles of Belt-Wearing Rate, Crash Speed Change, and Several Occupant Variables in Frontal Impacts for Two Levels of Injury

2019-04-02
2019-01-1219
Driver injury probabilities in real-world frontal crashes were statistically modeled to estimate the relative roles of five variables of topical interest. One variable pertained to behavior (belt-wearing rate), one pertained to crash circumstances (speed change), and three pertained to occupant demographics (sex, age, and body mass index). The attendant analysis was composed of two parts: (1) baseline statistical modeling to help recover the past, and (2) sensitivity analyses to help consider the future. In Part 1, risk functions were generated from statistical analysis of real-world data pertaining to 1998-2014 model-year light passenger cars/trucks in 11-1 o’clock, full-engagement frontal crashes documented in the National Automotive Sampling System (NASS, 1997-2014). The selected data yielded a weighted estimate of 1,269,178 crash-involved drivers.
Technical Paper

Lower-Body Injury Rates in Full-Engagement Frontal Impacts: Field Data and Logistic Models

2006-04-03
2006-01-1666
Lower-body injury data for adults in real-world frontal impacts in the National Automotive Sampling System (NASS) were collected, analyzed, and modeled via statistical methods. Two levels of lower-body injury were considered: maximum serious-to-fatal (MAIS3+) and moderate-to-fatal (MAIS2+). In the analysis, we observed that a substantial fraction of all lower-body injured occupants had no recorded floor/toe pan intrusion: 47% of all MAIS3+ injured occupants; 69% of all MAIS2+ injured occupants. In the statistical modeling, we developed binary logistic regression models to fit the MAIS3+ and MAIS 2+ injury data. The statistically significant variables (p ≤ 0.05) were the speed change of the crash, postcrash floor/toe pan intrusion, level of restraint, occupant age, and occupant gender.
Technical Paper

Derivation and Theoretical Assessment of a Set of Biomechanics-based, AIS2+ Risk Equations for the Knee-Thigh-Hip Complex

2006-11-06
2006-22-0005
A set of risk equations was derived to estimate the probability of sustaining a moderate-to-serious injury to the knee-thigh-hip complex (KTH) in a frontal crash. The study consisted of four parts. First, data pertaining to knee-loaded, whole-body, post-mortem human subjects (PMHS) were collected from the literature, and the attendant response data (e.g., axial compressive load applied to the knee) were normalized to those of a mid-sized male. Second, numerous statistical analyses and mathematical constructs were used to derive the set of risk equations for adults of various ages and genders. Third, field data from the National Automotive Sampling System (NASS) were analyzed for subsequent comparison purposes.
Technical Paper

Derivation of a Provisional, Age-dependent, AIS2+ Thoracic Risk Curve for the THOR50 Test Dummy via Integration of NASS Cases, PMHS Tests, and Simulation Data

2015-11-09
2015-22-0006
A provisional, age-dependent thoracic risk equation (or, “risk curve”) was derived to estimate moderate-to-fatal injury potential (AIS2+), pertaining to men with responses gaged by the advanced mid-sized male test dummy (THOR50). The derivation involved two distinct data sources: cases from real-world crashes (e.g., the National Automotive Sampling System, NASS) and cases involving post-mortem human subjects (PMHS). The derivation was therefore more comprehensive, as NASS datasets generally skew towards younger occupants, and PMHS datasets generally skew towards older occupants. However, known deficiencies had to be addressed (e.g., the NASS cases had unknown stimuli, and the PMHS tests required transformation of known stimuli into THOR50 stimuli).
Technical Paper

New Risk Curves for NHTSA’s Brain Injury Criterion (BrIC): Derivations and Assessments

2016-11-07
2016-22-0012
The National Highway Traffic Safety Administration (NHTSA) recently published a Request for Comments regarding a potential upgrade to the US New Car Assessment Program (US NCAP) - a star-rating program pertaining to vehicle crashworthiness. Therein, NHTSA (a) cited two metrics for assessing head risk: Head Injury Criterion (HIC15) and Brain Injury Criterion (BrIC), and (b) proposed to conduct risk assessment via its risk curves for those metrics, but did not prescribe a specific method for applying them. Recent studies, however, have indicated that the NHTSA risk curves for BrIC significantly overstate field-based head injury rates. Therefore, in the present three-part study, a new set of BrIC-based risk curves was derived, an overarching head risk equation involving risk curves for both BrIC and HIC15 was assessed, and some additional candidate-predictor-variable assessments were conducted. Part 1 pertained to the derivation.
X