Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Analysis of Vehicle-to-Ground Impacts During a Rollover with an Impulse-Momentum Impact Model

2008-04-14
2008-01-0178
This paper explores the accuracy of a planar, impulse-momentum impact model in representing the dynamics of three vehicle-to-ground impacts that occurred during a SAE J2114 dolly rollover test. The impacts were analyzed, first, using video analysis techniques to obtain the actual velocity conditions, accelerations, impact force components and the energy loss for each of the impacts. Next, these same impacts were analyzed using the known initial velocity conditions and the subject impact model. The equations of this impact model yielded calculated values for the velocity changes and energy loss for each impact. These calculated results were then compared to the actual dynamics data from the video analysis of the impacts to determine the accuracy of the impact model results. For all three vehicle-to-ground impacts considered in this study, the impact model results for the velocity changes and energy loss showed excellent agreement with the video analysis results for these parameters.
Technical Paper

Factors Influencing Roof-to-Ground Impact Severity: Video Analysis and Analytical Modeling

2007-04-16
2007-01-0726
This paper explores the dynamics of rollover crashes and examines factors that influence the severity of the roof-to-ground impacts that occur during these crashes. The paper first reports analysis of 12 real-world rollover accidents that were captured on video. Roll rate time histories for the vehicles in these accidents are reported and the characteristics of these curves are analyzed. Next, the paper uses analytical modeling to explore the influence that the trip phase characteristics may have on the severity of roof-to-ground impacts that occur during the roll phase. Finally, the principle of impulse and momentum is used to derive an analytical impact model for examining the mechanics of a roof-to-ground impact. This modeling is used to identify the influence of various impact conditions on the severity of a roof-to-ground impact.
Technical Paper

The Influence of Vehicle-to-Ground Impact Conditions on Rollover Dynamics and Severity

2008-04-14
2008-01-0194
This paper explores the influence of the impact conditions on the dynamics and the severity of rollover crashes. Causal connections are sought between the impact conditions and the crash attributes to which they lead. The paper begins by extending previously presented equations that describe the dynamics of an idealized vehicle-to-ground impact. It then considers the behavior of these equations under a variety of impact conditions that occur during real-world rollovers. Specifically, the equations of this impact model are used to explore the ways in which and the extent to which rollover dynamics and severity are influenced by the following factors: (1) the vehicle's shape and its orientation at impact, (2) its weight, center-of-mass location, and roll moment of inertia, (3) its translational speed, (4) its downward velocity, and (5) its roll velocity. Throughout this discussion, data from real-world and staged rollover crashes is used to give the parameter study an empirical basis.
Technical Paper

Simulating Headlamp Illumination Using Photometric Light Clusters

2009-04-20
2009-01-0110
Assessing the ability of a driver to see objects, pedestrians, or other vehicles at night is a necessary precursor to determining if that driver could have avoided a nighttime crash. The visibility of an object at night is largely due to the luminance contrast between the object and its background. This difference depends on many factors, one of which is the amount of illumination produced by a vehicle’s headlamps. This paper focuses on a method for digitally modeling a vehicle headlamp, such that the illumination produced by the headlamps can be evaluated. The paper introduces the underlying concepts and a methodology for simulating, in a computer environment, a high-beam headlamp using a computer generated light cluster. In addition, the results of using this methodology are evaluated by comparing light values measured for a real headlamp to a simulated headlamp.
Technical Paper

Analysis of a Dolly Rollover with PC-Crash

2009-04-20
2009-01-0822
This paper evaluates the use of PC-Crash simulation software for modeling the dynamics of a dolly rollover crash test. The specific test used for this research utilized a Ford sport utility vehicle and was run in accordance with SAE J2114. Scratches, gouges, tire marks and paint deposited on the test surface by the test vehicle were documented photographically and by digital survey and a diagram containing the layout of these items was created. The authors reviewed the test video to determine which part of the vehicle deposited each of these pieces of evidence. Position and orientation data for the vehicle in the test were then obtained using video analysis techniques. This data was then analyzed to determine the vehicle’s translational and rotational velocities throughout the test. Next, the test was modeled using PC-Crash.
Technical Paper

An Introduction to the Forensic Acquisition of Passenger Vehicle Infotainment and Telematics Systems Data

2017-03-28
2017-01-1437
The data obtained from event data recorders found in airbag control modules, powertrain control modules and rollover sensors in passenger vehicles has been validated and used to reconstruct crashes for years. Recently, a third-party system has been introduced that allows crash investigators and reconstructionists to access, preserve and analyze data from infotainment and telematics systems found in passenger vehicles. The infotainment and telematics systems in select vehicles retain information and event data from cellular telephones and other devices connected to the vehicle, vehicle events and navigation data in the form of tracklogs. These tracklogs provide a time history of a vehicle’s geolocation that may be useful in investigating an incident involving an automobile or reconstructing a crash. This paper presents an introduction to the type of data that may be retained and the methods for performing data acquisitions.
Journal Article

A Method to Quantify Vehicle Dynamics and Deformation for Vehicle Rollover Tests Using Camera-Matching Video Analysis

2008-04-14
2008-01-0350
This paper examines the use of camera-matching video analysis techniques to quantify the vehicle dynamics and deformation for a dolly rollover test run in accordance with the SAE Recommended Practice J2114. The method presented enables vehicle motion data and deformation measurements to be obtained without the use of the automated target tracking employed by existing motion tracking systems. Since it does not rely on this automated target tracking, the method can be used to analyze video from rollover tests which were not setup in accordance with the requirements of these automated motion tracking systems. The method also provides a straightforward technique for relating the motion of points on the test vehicle to the motion of the vehicle's center-of-mass. This paper, first, describes the specific rollover test that was utilized. Then, the camera-matching method that was used to obtain the vehicle motion data and deformation measurements is described.
Technical Paper

Restitution Modeling for Crush Analysis: Theory and Validation

2006-04-03
2006-01-0908
This paper describes, demonstrates and validates a method for incorporating the effects of restitution into crush analysis. The paper first defines the impact coefficient of restitution in a manner consistent with the assumptions of crush analysis. Second, modified equations of crush analysis are presented that incorporate this coefficient of restitution. Next, the paper develops equations that model restitution response on a vehicle-specific basis. These equations utilize physically meaningful empirical constants and thus improve on restitution modeling equations already in the literature of accident reconstruction. Finally, the paper presents analysis of four vehicle-to-vehicle crash tests, demonstrating that the application of the restitution model derived in this paper results in crush analysis yielding more accurate ΔV calculations.
Journal Article

Occupant Ejection Trajectories in Rollover Crashes: Full-Scale Testing and Real World Cases

2008-04-14
2008-01-0166
A simple two-dimensional particle model was previously developed to calculate occupant ejection trajectories in rollover crashes. Model parameters were optimized using data from a dolly rollover test of a 1998 Ford Expedition in which five unbelted anthropomorphic test devices (ATDs) were completely ejected. In the present study, the model was further validated against a dolly rollover test of a 2004 Volvo XC90 in which three unbelted ATDs were completely ejected. The findings from the experimental testing were then compared to two real world rollover crashes with occupant ejections that were captured on video. The crashes were reconstructed by analyzing the video footage and aerial images of the crash sites. In both cases, the model was able to accurately match the observed trajectories of the ejected occupants, and the optimized model parameters were similar to the values obtained from the dolly rollover testing.
Journal Article

Development of a Variable Deceleration Rate Approach to Rollover Crash Reconstruction

2009-04-20
2009-01-0093
The goal of this paper is to advance rollover crash reconstruction techniques beyond the assumption typically made that a rolling vehicle decelerates at a constant rate. The paper presents and applies a planar vehicle-to-ground impact model to explore the manner in which a vehicle’s deceleration rate would be expected to vary over the course of a rollover. Based on this analysis, several possible variable deceleration rate profile shapes are then suggested for rollover crash reconstruction. Then, two rollover crash tests are analyzed to determine the extent to which these suggested variable deceleration rate profiles can be expected to yield accurate reconstructions of the translational and angular velocity histories for actual rollovers. Overall, each of the suggested variable deceleration rate profiles represented a significant improvement over using a constant deceleration rate.
X