Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

A Three-Parameter Transient 1D Catalyst Model

2011-04-12
2011-01-1306
Interactions between in-cylinder combustion and emission aftertreatment need to be understood for optimizing the overall powertrain system. Numerical investigations can aid this process. For this purpose, simple and numerically fast, but still accurate models are needed for in-cylinder combustion and exhaust aftertreatment. The chemical processes must be represented in sufficient detail to predict engine power, fuel consumption, and tailpipe emission levels of NOx, soot, CO and unburned hydrocarbons. This paper reports on a new transient one-dimensional catalyst model. This model makes use of a detailed kinetic mechanism to describe the catalytic reactions. A single-channel or a set of representative channels are used in the presented approach. Each channel is discretized into a number of cells. Each cell is treated as a perfectly stirred reactor (PSR) with a thin film layer for washcoat treatment. Heat and mass transport coefficients are calculated from Nusselt and Sherwood laws.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Modeling and Investigation of Exothermic Centers in HCCI Combustion

2009-04-20
2009-01-0131
The formation of exothermic centers was modeled with a Stochastic Reactor Model (SRM) to investigate their impact on HCCI combustion. By varying the exhaust valve temperature, and thus assigning more realistic wall temperatures, the formation of exothermic centers and the ignition timing was shifted in time. To be able to study the exothermic centers, their formation and their distribution, Scatter plots, standard deviation plots and Probability Density Function (PDF) plots were constructed on the basis of the data the SRM calculations provided. The standard deviation for the particle temperatures was found to be an useful indicator of the degree of homogeneity within the combustion chamber, and thus of how efficient the combustion process was. It was observed that when the standard deviation of the temperature was higher, the emissions of CO and of hydrocarbons present at the end of the closed cycle were higher.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Soft Air Diffusion to Improve the Thermal Comfort - a Design Approach Based on CFD Tool and Virtual Thermal Manikin

2001-10-01
2001-01-3439
The cabin comfort is one of the most competitive issues in the automotive area of business. The thermal comfort and the environmental well-being are fundamental performances that contribute to generate the more general idea of perceived quality. The CRF developed in the past the concept so-called “healthy bubble” that was implemented in the Lancia Dialogos concept car. The passengers are surrounded by an air bubble, created by generating low velocity air flows, that are diffused through the interior panels and components (e.g. dashboard, roof, back of the seats, etc.), and by surfaces temperature control (e.g. carpet, seats, etc.). At present the original idea has generally been accepted, and different solutions to diffuse air and to control surface temperature of vehicle interiors have been proposed by some automotive supplier.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models

2017-03-28
2017-01-0966
The three-way catalytic converter (TWC) is the most common catalyst for gasoline engine exhaust gas after treatment. The reduction of carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (HC) is achieved via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single-channel approaches and detailed kinetic models. In addition to the single-channel model multiple representative catalyst channels are used in this work to take heat transfer between the channels into account. Furthermore, inlet temperature distribution is considered. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

A Fast Tool for Predictive IC Engine In-Cylinder Modelling with Detailed Chemistry

2012-04-16
2012-01-1074
This paper reports on a fast predictive combustion tool employing detailed chemistry. The model is a stochastic reactor based, discretised probability density function model, without spatial resolution. Employing detailed chemistry has the potential of predicting emissions, but generally results in very high CPU costs. Here it is shown that CPU times of a couple of minutes per cycle can be reached when applying detailed chemistry, and CPU times below 10 seconds per cycle can be reached when using reduced chemistry while still catching in-cylinder in-homogeneities. This makes the tool usable for efficient engine performance mapping and optimisation. To meet CPU time requirements, automatically load balancing parallelisation was included in the model. This allowed for an almost linear CPU speed-up with number of cores available.
Technical Paper

Experimental Investigation of Fuel Consumption, Exhaust Emissions and Heat Release of a Small-Displacement Turbocharged CNG Engine

2006-04-03
2006-01-0049
An experimental investigation of fuel consumption, exhaust emissions and heat release was performed on a prototype 1.2 liter 4 cylinder turbocharged CNG engine, which has been specifically developed and optimized in order to fully exploit natural gas potential. More specifically, the combination of a high CR of 10.1:1 and a Garrett high-performance turbocharger featuring selectable levels of boost produced a favorable efficiency map, with peak values exceeding 35%. The experimental tests were carried out in order to assess the engine performance improvement attainable through turbocharging and to define the best control strategies for this latter. The investigation included ample variations of engine speed and load, RAFR as well as trade-offs between boost level and throttle position. At each test point, in-cylinder pressure, fuel consumption and ‘engine-out’ pollutant emissions, including methane unburned hydrocarbons concentration, were measured.
Technical Paper

Interaction Between Gasoline Properties and Engine Management System and Effects on 3-Way Catalyst Efficiency

1997-10-01
972839
The EPEFE study (European Programme on Emissions, Fuels and Engine Technologies), /1/ and other programmes have identified an increase in tailpipe NOx emissions with reduced gasoline aromatics content for modern 3-way controlled catalyst vehicles. This effect occurs with fully warmed-up catalyst under closed-loop operation. In order to understand the reasons for this effect VW and Shell have mechanistically investigated the effects of fuel properties on EMS (engine management system) and catalyst performance. Fuels with independent variation of oxygen, aromatics and mid-range volatility were tested in different VW engines. λ was monitored using sensors located both pre and post catalyst. The results confirmed that reducing gasoline aromatics content reduced engine-out emissions but increased tailpipe NOx emissions. It could be shown that differences in H/C ratio led to differences in the hydrogen content of engine-out emissions which affected the reading of the λ sensor.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Human Factors Data in Relation to Whiplash Injuries in Rear End Collisions of Passsenger Cars

1998-03-01
981191
Cervical Spine Distortions (CSD) - sometimes called whiplash injuries - have turned out in passenger car accidents to be one of the most important types of injuries to occupants, according to the rate of occurences and to the significance of consequences as well. Many technical aspects of traffic accidents which in the past have led to CSD have been analysed and reported in a large number of publications. However human factors data are not as good represented in the literature. Particularly these parameters and their relationship to whiplash injuries have been analysed on the basis of the Volkswagen Accident Database. The significance of the items gender, age, body height and body weight of belted occupants in passenger cars involved in rear end collisions is presented in quantitative terms regarding frequencies of occurance and risk of suffering CSD respectively.
X