Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Computational Simulation of Tractor-Trailer Gap Flow with Drag-Reducing Aerodynamic Devices

2005-11-01
2005-01-3625
Computational simulations of the Modified Ground Transportation System1 (M-GTS), a 1/14th-scale simplified tractor-trailer geometry, are performed at both laboratory and full-scale Reynolds numbers using the NASA overset grid code OVERFLOW2. Steady Reynolds' Averaged Navier-Stokes (RANS) simulations are conducted to deepen the understanding of tractor-trailer gap flow structure, and to ascertain the time-averaged efficacy of tractor cab extenders and trailer-face splitter plates in reducing aerodynamic drag in typical crosswinds. Results of lab-scale simulations compare favorably to body force and particle image velocimetry (PIV) data obtained from University of Southern California (USC) experiments for two tractor-trailer gap lengths. Full-scale simulations highlight model geometry limitations and allude to the use of splitter plates in place of, or in conjunction with, tractor cab extenders.
X