Refine Your Search

Topic

Author

Search Results

Technical Paper

Detailed Kinetic Modeling of Toluene Combustion over a Wide Range of Temperature and Pressure

2007-07-23
2007-01-1885
The ignition delay times of toluene-oxygen-argon mixtures with fuel equivalence ratios from 0.5 to 1.5 and concentrations of toluene from 0.1 to 2.0% were measured behind reflected shock waves for temperatures 1270 to 1755 K and at a pressure of 2.4 ± 0.7 atm. A detailed chemical kinetic model has been developed on the basis of a kinetic mechanism proposed by Pitz et al. [1] to reproduce our experimental results as well as some literature data obtained in other shock tubes at pressures from 1.1 to 50 atm. It is found that the present chemical kinetic model could give better agreement on the pressure dependence of the ignition delay times than the previously proposed kinetic models.
Technical Paper

Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines

2007-07-23
2007-01-1867
Homogenous Charge Compression Ignition (HCCI) is a new engine technology with fundamental differences over conventional engines. HCCI engines are intrinsically fuel flexible and can run on low-grade fuels as long as the fuel can be heated to the point of ignition. In particular, HCCI engines can run on “wet ethanol:” ethanol-in-water mixtures with high concentration of water, such as the high water content ethanol-in-water mixture that results from fermentation of corn mash. Considering that much of the energy required for processing fermented ethanol is spent in distillation and dehydration, direct use of wet ethanol in HCCI engines considerably shifts the energy balance in favor of ethanol.
Technical Paper

Demonstrating Optimum HCCI Combustion with Advanced Control Technology

2009-06-15
2009-01-1885
We have converted a Caterpillar 3406 natural gas spark ignited engine to HCCI mode and used it as a test bed for demonstrating advanced control methodologies. Converting the engine required modification of most engine systems: piston geometry, starting, fueling, boosting, and (most importantly) controls. We implemented a thermal management system consisting of a recuperator that transfers heat from exhaust to intake gases and a dual intake manifold that permits precise cylinder-by-cylinder ignition control. Advanced control methodologies are used for (1) minimizing cylinder-to-cylinder combustion timing differences caused by small variations in temperature or compression ratio; (2) finding the combustion timing that minimizes fuel consumption; and (3) tuning the controller parameters to improve transient response.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

2005-05-11
2005-01-2135
The influence of the small amounts (1-3%) of the additive di-tertiary butyl peroxide (DTBP) on the combustion event of Homogeneous Charge Compression Ignition (HCCI) engines was investigated using engine experiments, numerical modeling, and carbon-14 isotope tracing. DTBP was added to neat ethanol and diethyl ether (DEE) in ethanol fuel blends for a range of combustion timings and engine loads. The addition of DTBP to the fuel advanced combustion timing in each instance, with the DEE-in-ethanol mixture advancing more than the ethanol alone. A numerical model reproduced the experimental results. Carbon-14 isotope tracing showed that more ethanol burns to completion in DEE-in-ethanol blends with a DTBP additive when compared to results for DEE-in-ethanol without the additive. However, the addition of DTBP did not elongate the heat release in either case.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution from IVC to SOC: A Numerical and Fundamental Study

2006-04-03
2006-01-0869
It has previously been shown experimentally and computationally that the process of Homogeneous Charge Compression Ignition (HCCI) is very dependent on the pre-combustion gas temperature field. This study looks in detail at how temperature fields can evolve by comparing results of two combustion chamber designs, a piston with a square bowl and a disk shaped piston, and relates these temperature fields to measured HCCI combustion durations. The contributions of combustion chamber surface area and turbulence levels to the gas temperature evolution are considered over the crank angle range from intake valve closure to top-dead-center. This is a CFD study, whose results were transformed into traditional analysis methods of convective heat transfer (q=h*A*ΔT) and boundary layers.
Technical Paper

Effect of Charge Non-uniformity on Heat Release and Emissions in PCCI Engine Combustion

2006-04-03
2006-01-1363
Homogeneous Charge Compression Ignition (HCCI) engines are currently of great interest as a future alternative to Diesel and Spark Ignition engines because of HCCI's potential to achieve high efficiency with very low NOx emissions. However, significant technical barriers remain to practical implementation of HCCI engines: difficult-to-control combustion, low power density, rapid pressure rise, and high hydrocarbon and carbon monoxide emissions. To overcome some of these barriers, operational strategies that involve relaxing the constraint of truly “homogeneous” HCCI combustion have been studied. The phrase “Premixed Charge Compression Ignition” or “PCCI” combustion can be used to describe this class of combustion processes, in which combustion occurs similarly to HCCI engines as a non-mixing controlled, chemical kinetics dominated, auto-ignition process, but the fuel, air, and residual gas mixture need not be homogeneous.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation

1999-03-01
1999-01-0509
This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.
Technical Paper

HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling

2000-03-06
2000-01-0328
Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.
Technical Paper

Dynamics of Combustion in a Diesel Engine Under the Influence of Air/Fuel Ratio

2000-03-06
2000-01-0203
The dynamic stage of combustion - the intrinsic process for pushing the compression polytrope away from the expansion polytrope to generate the indicator work output of a piston engine - was studied to reveal the influence of the air/fuel ratio on the effectiveness with which the fuel was utilized. The results of tests carried out for this purpose, using a 12 liter diesel engine, were reported last year [SAE 1999-01-0517]. Presented here is an analytic interpretation of the data obtained for part-load operation at 1200 and 1800 rpm. A solution is thus provided for an inverse problem: deduction of information on the dynamic features of the exothermic process of combustion from measured pressure record. Provided thereby, in particular, is information on the effectiveness with which fuel was utilized in the course of this process - a parameter reflecting the effect of energy lost by heat transfer to the walls.
Technical Paper

HCCI Combustion: Analysis and Experiments

2001-05-14
2001-01-2077
Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOx emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions.
Technical Paper

Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

2001-05-07
2001-01-1895
A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbo-charged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion

2002-10-21
2002-01-2870
This paper shows how a computer can systematically remove non-essential chemical reactions from a large chemical kinetic mechanism. The computer removes the reactions based upon a single solution using a detailed mechanism. The resulting reduced chemical mechanism produces similar numerical predictions significantly faster than predictions that use the detailed mechanism. Specifically, a reduced chemical kinetics mechanism for iso-octane has been derived from a detailed mechanism by eliminating unimportant reaction steps and species. The reduced mechanism has been developed for the specific purpose of fast and accurate prediction of ignition timing in an HCCI engine. The reduced mechanism contains 199 species and 383 reactions, while the detailed mechanism contains 859 species and 3606 reactions. Both mechanisms have been used in numerical simulation of HCCI combustion.
Technical Paper

HCCI Engine Control by Thermal Management

2000-10-16
2000-01-2869
This work investigates a control system for HCCI engines, where thermal energy from exhaust gas recirculation (EGR) and compression work in the supercharger are either recycled or rejected as needed. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the restrictions of low NOx and peak cylinder pressure. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and RPM. For zero torque (idle), the optimizer determines operating conditions that result in minimum fuel consumption. The optimizer is also used for determining the maximum torque that can be obtained within the operating restrictions of NOx and peak cylinder pressure.
Technical Paper

Current Research in HCCI Combustion at UC Berkeley and LLNL

2001-08-20
2001-01-2511
This paper describes the Homogeneous charge compression ignition (HCCI) research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. HCCI is an old combustion technology that may now be developed with expectations of high efficiency, low NOx, and low particulate matter emissions; in short, an alternative to diesel engines. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
X