Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Some Factors in the Subjective Evaluation of Laboratory Simulated Ride

2001-04-30
2001-01-1569
Effects of DOF and subjective method on evaluations of ride quality on the Ford Vehicle Vibration Simulator were studied. Seat track vibrations from 6 vehicles were reproduced on the 6 DOF seat shaker in a DOE with pitch and roll as factors. These appeared in two evaluations of ride/shake; semantic scaling by 30 subjects of 6 vehicles, and paired comparisons by 16 of the subjects on 3 of the vehicles. Both methods found significant vehicle, pitch and roll effects. Order dependence was shown for semantic scaling. The less susceptible paired comparison method gave a different ordering, and is thus preferred.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
Technical Paper

Two-stage Gear Driveline Vibration and Noise

2011-05-17
2011-01-1542
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
Technical Paper

Order Separation Using Multiple Tachometers and the TVDFT Order Tracking Method

2005-05-16
2005-01-2265
An automobile and a tracked military vehicle were instrumented with multiple tachometers, one for each drive wheel/sprocket and operated with accelerometers mounted at suspension, chassis, and powertrain locations on the vehicles. The Time Variant Discrete Fourier Transform, TVDFT, order tracking method was then used to extract the order tracks and operating shapes estimated based on each tachometer. It is shown that under some conditions a different operating shape is excited by each of the wheels/sprockets simultaneously. This is due to the asymmetries present in the vehicles. The strengths of the TVDFT order tracking method are shown for this type of analysis, which is difficult due to the closeness, within 0.001 orders, and crossing of the orders. Benefits of using multiple tachometers and advanced order tracking methods become apparent for solving a class of noise and vibration problems.
Technical Paper

Ford “S” Frame

1969-02-01
690004
Since statistics indicate that front impact is the major accident type, Ford has been studying energy-absorbing structures for some time. Early designs such as the “ball and tube” and “rail splitter” were discarded in favor of the “S” frame. Details of the design approach and testing are given in this paper. Design objectives were increased effective collapse distance, compatibility with production practices, and maintenance of satisfactory noise, vibration, and harshness levels. Safety objectives are improved passenger compartment integrity and reduction of seat belt loads. Barrier crash tests at 30 mph (equivalent to collision into standing vehicle at 50 mph) were used to evaluate the design of the “S” frame. Results of testing indicate that occupant restraint with seat belts, combined with front end structural improvements, offer the most promise for injury reduction during service front impact accidents.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Threshold Level as an Index of Squeak and Rattle Performance

1999-05-17
1999-01-1730
A practical approach for evaluating and validating global system designs for Squeak and Rattle performance is proposed. Using simple slip and rattle models, actual sound and vibration data, and the fundamentals of audiological perception, analysis tools adapted from Chaos Theory are used to establish threshold levels of performance and identify system characteristics which are significant contributors to Squeak and Rattle. Focus on system design is maintained by using a simple rattle noise indicator and relating rattle events to levels of dynamic motion (acceleration, velocity, etc.). The threshold level is defined as the level of acceleration at which the system moves from a non-rattling state to a rattling state. The approach is demonstrated with a simple analytical model applied to an experimental structure under dynamic load.
Technical Paper

Evaluation of Off-Highway Vehicle Cab Noise and Vibration Using Inverse Matrix Techniques

1999-09-14
1999-01-2815
Noise Path Analysis techniques (NPA) have been developed and refined by the automotive industry for structure-borne noise and vibration evaluation of their products. Off-highway vehicles, particularly those with enclosed cabs, are excellent candidates for the application of these techniques. Like automobiles, many off-highway machines are typically driven by a rotating power source, have a well-defined acoustic receiver space, and use some form of isolation between source and receiver sub-systems. These structural characteristics make NPA a useful tool for identifying dominant sources and energy transfer paths. The objectives of this paper are to revisit the fundamental theory of matrix inversion as it applies to NPA techniques, and to address the common setup and measurement issues encountered when acquiring noise path data on off-highway machines. A general overview of the procedures involved in applying NPA to an off-highway machine will be presented.
X