Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines

2010-04-12
2010-01-1132
The recent development of diesel engine fuel injection systems has been dominated by how to manage the degrees of freedom that common rail multi-pulse systems now offer. A number of production engines already use four injection events while in research, work based on up to eight injection events has been reported. It is the degrees of freedom that lead to a novel experimental requirements. There is a potentially complex experimental program needed to simply understand how injection parameters influence the combustion process in steady state. Combustion behavior is not a continuum and as both injection and EGR rates are adjusted, distinct combustion modes emerge. Conventional calibration processes are severely challenged in the face of large number of degrees of freedom and as a consequence new development approaches are needed.
Journal Article

Methodology for the Design of an Aerodynamic Package for a Formula SAE Vehicle

2014-04-01
2014-01-0596
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages.
Journal Article

Experimental Data for the Validation of Numerical Methods - SAE Reference Notchback Model

2014-04-01
2014-01-0590
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

The Potential for Thermo-Electric Devices in Passenger Vehicle Applications

2010-04-12
2010-01-0833
The promise of thermo-electric (TE) technology in vehicles is a low maintenance solid state device for power generation. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. The potential to make use of an otherwise wasted flow of energy means that the overall system efficiency can be improved substantially. One of the barriers to a successful application of the technology is the device efficiency. The TE properties of even the most advanced materials are still not sufficient for a practical, cost effective device. However the rate of development is such that practical devices are likely to be available within the next fifteen years. In a previous paper [ 1 ], the potential for such a device was shown through an integrated vehicle simulation and TEG model.
Technical Paper

Handling Performance of a Vehicle Equipped with an Actively Controlled Differential

2011-05-17
2011-01-1557
Vehicle handling is heavily influenced by the torque distribution to the driving wheels. This work presents a newly developed differential, designed to actively control the driving torque distribution to the wheels. The new device incorporates an electric machine, which can operate either as a motor or generator. A control unit monitors signals from various sources in the vehicle, such as steering angle, yaw acceleration and wheel rotational speed. Then, a control algorithm takes into account the steering angle rate and the vehicle speed in order to determine the suitable difference between output torque values. The handling improvement capabilities are evaluated by simulating in ADAMS/Car the driving behavior of a vehicle equipped with the new differential. The model that has been used to simulate vehicle handling is that of a Formula SAE type racing car.
Technical Paper

Elastohydrodynamics of Hypoid Gears in Axle Whine Conditions

2012-06-13
2012-01-1538
This paper presents an investigation into Elastohydrodynamic (EHL) modeling of differential hypoid gears that can be used in coupling with Newtonian (or multibody) dynamics to study Noise, Vibration and Harshness (NVH) phenomena, such as axle whine. The latter is a noise of a tonal nature, emitted from differential axles, characterised by the gear meshing frequency and its multiples. It appears at a variety of operating conditions; during drive and coasting, high and low torque loading. Key design targets for differential hypoid gears are improved efficiency and reduced vibration, which depend critically on the formation of an EHL lubricant film. The stiffness and damping of the oil film and friction generated in the contact can have important effects and cannot be neglected when examining the NVH behaviour of hypoid gears.
Technical Paper

The Effect of Vehicle Cruising Speed on the Dynamics of Automotive Hypoid Gears

2012-06-13
2012-01-1543
The dynamics of automotive differentials have been studied extensively to improve their efficiency and additionally, in recent years, generated noise and vibration. Various mathematical models have been proposed to describe the contact/impact of gear teeth pairs. However, the influence of vehicular cruising speed on the resisting torque has not been considered in sufficient detail. This can lead to unrealistic predictions with regards to loss of contact of teeth pair, a phenomenon which leads to NVH issues. The current work presents a torsional model of a hypoid gear pair. The resisting torque is a function of the traction force and aerodynamic drag, whilst the vehicle is cruising at nominally constant speed. The pinion input torque is derived through assumed instantaneous equilibrium conditions. In this approach, realistic excitation capturing the vehicle's driving conditions is imposed on the dynamics of the hypoid gear pair.
Technical Paper

Simulation of Exhaust Unburned Hydrocarbons from a Spark Ignition Engine, Originating from In-Cylinder Crevices

1996-10-01
961956
In this paper the effect of in-cylinder crevices formed by the piston cylinder clearance, above the first ring, and the spark plug cavity, on the entrapment of unburned fuel air mixture during the late compression, expansion and exhaust phases of a spark ignition engine cycle, have been simulated using the Computational Fluid Dynamic (CFD) code KIVA II. Two methods of fuelling the engine have been considered, the first involving the carburetion of a homogeneous fuel air mixture, and the second an attempt to simulate the effects of manifold injection of fuel droplets into the cylinder. The simulation is operative over the whole four stroke engine cycle, and shows the efflux of trapped hydrocarbon from crevices during the late expansion and exhaust phases of the engine cycle.
Technical Paper

Application of Computational Fluid Dynamics to the Study of Conditions Relevant to Autoignition Damage in Engines

1996-10-01
961963
The process of autoignition in an internal combustion engine cylinder produces large amplitude high frequency gas pressure waves accompanied by significant increases in gas temperature and velocity, and as a consequence large convective heat fluxes to piston and cylinder surfaces. Extended exposure of these surfaces to autoignition, results in their damage through thermal fatigue, particularly in regions where small clearances between the piston and cylinder or cylinder head, lie in the path of the oscillatory gas pressure waves. The ability to predict spatial and temporal' variations in cylinder gas pressure, temperature and velocity during autoignition and hence obtain reasonable estimates of surface heat flux, makes it possible to assess levels of surface fatigue at critical zones of the piston and cylinder head, and hence improve their tolerance to autoignition.
Technical Paper

Measurement of Formula One Car Drag Forces on the Test Track

1996-12-01
962517
Coastdown testing is a proven method for determining the drag coefficients for road cars whilst the vehicle is in its normal operating environment. An accurate method of achieving this has been successfully developed at Loughborough University. This paper describes the adaptation and application of these techniques to the special case of a contemporary Formula One racing car. The work was undertaken in conjunction with the Benetton Formula One racing team. The paper outlines the development and application of a suitable mathematical model for this particular type of vehicle. The model includes the aerodynamic, tyre, drivetrain and the un-driven wheel drags and accounts for the change in aerodynamic drag due to ambient wind and changes in vehicle ride height during the coastdown. The test and analysis methods are described.
Technical Paper

Moments of Power: Statistical Analysis of the Primary Energy Consumption of a Vehicle

2023-04-11
2023-01-0541
The energy consumption of a vehicle is typically determined either by testing or in simulation. While both approaches are valid, they only work for a specific drive cycle, they are time intensive, and they do not directly result in a closed-form relationship between key parameters and consumption. This paper presents an alternative approach that determines the consumption based on a simple analytical model of the vehicle and statistical parameters of the drive cycle, specifically the moments of the velocity. This results in a closed-form solution that can be used for analysis or synthesis. The drive cycle is quantified via its moments, specifically the average speed, the standard deviation of the speed as well as the higher order moments skewness, and the kurtosis. A mixed quadratic term is added to account for acceleration or aggressiveness, but it is noticeably distinct from the conventional metric of positive kinetic energy (PKE).
Technical Paper

International Teaming in Aircraft Design Education

1999-10-19
1999-01-5533
An experiment is described in which students from two universities, one in the UK and one in the USA, worked together in multidisciplinary teams on aircraft design projects to satisfy the “capstone” design course requirements in their respective degree programs. Aeronautical, Mechanical, Industrial, and Systems Engineering students from Virginia Tech and Loughborough University were placed on teams to work on two different airplane designs. The paper describes the evolution of this educational collaboration and the organization of the experiment. It also reviews the program ’s successes and its problems. Recommendations are made for continuation of the program and to guide others who might be interested in pursuing a similar experiment.
Technical Paper

Unified Backwards Facing and Forwards Facing Simulation of a Hybrid Electric Vehicle using MATLAB Simscape

2015-04-14
2015-01-1215
This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

A Predictive Model of Pmax and IMEP for Intra-Cycle Control

2014-04-01
2014-01-1344
In order to identify predictive models for a diesel engine combustion process, combustion cylinder pressure together with other fuel path variables such as rail pressure, injector current and sleeve pressure of 1000 continuous cycles were sampled and collected at high resolution. Using these engine steady state test data, three types of modeling approach have been studied. The first is the Auto-Regressive-Moving-Average (ARMA) model which had limited prediction ability for both peak combustion pressure (Pmax) and Indicated Mean Effective Pressure (IMEP). By applying correlation analysis, proper inputs were found for a linear predictive model of Pmax and IMEP respectively. The prediction performance of this linear model is excellent with a 30% fit number for both Pmax and IMEP. Further nonlinear modeling work shows that even a nonlinear Neural Network (NN) model does not have improved prediction performance compared to the linear predictive model.
Technical Paper

Starting and Developing an Engineering Career: The Barriers and Opportunities

2014-04-01
2014-01-0625
There has probably never been such a demand for professionally qualified engineers, and yet both the number and diversity of people entering the profession continue to decline. Worldwide, there are very many initiatives - some generally encouraging interest in the profession, and others targeting specific audiences. The reports speak of local success, but the overall picture remains discouraging. In this paper we focus on the “pipeline” from primary education through to the transition from graduate engineer into an experienced member of engineering staff. We have based the discussion on both the presentations and comments made during a panel discussion held at the 2013 SAE International Congress. The paper is intended as a summary of the points raised during that discussion and, we hope proves to be starting point for further investigation and analysis. Of particular note is the sheer diversity of initiatives, and the pressing need for role models and mentoring.
Technical Paper

Turbogenerator Transient Energy Recovery Model

2023-04-11
2023-01-0208
Significant exhaust enthalpy is wasted in gasoline turbocharged direct injection (GTDI) engines; even at moderate loads the WG (Wastegate) starts to open. This action is required to reduce EBP (Exhaust Back Pressure). Another factor is catalyst protection, placed downstream turbine. Lambda enrichment is used to perform this. However, the conventional turbine has a temperature drop across it when used for energy recovery. Catalyst performance is critical for emissions, therefore the only location for any additional device is downstream of it. This is a challenge for any additional energy recovery, but a smaller turbine is a design requirement, optimised to work at lower operating pressure ratios. A WAVE model of the 2.0L GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated with steady state dynamometer data to estimate drive cycle benefit.
X