Refine Your Search



Search Results

Technical Paper

Parametric Study into the Effects of Factors Affecting Real-World Vehicle Exhaust Emission Levels

The work presented investigates the effect of road gradient, head-wind, horizontal road curvature, changes in tyre rolling radius, vehicle drag co-efficient and vehicle weight on real-world emission levels of a modern EURO-IV vehicle. A validated steady-state engine performance map based vehicle modeling approach has been used for the analysis. The results showed that a generalized correction factor to include the effect of road-gradient on real-world emission levels might not yield accurate results, since the emission levels are strongly dependent on the position of the vehicle operating parameters on the engine maps. In addition, it also demonstrated that the inclusion of horizontal road curvature such as roundabouts and traffic islands are essential for the estimation of the real-world emission levels.
Technical Paper

In-Cylinder Flow Structure Analysis by Particle Image Velocimetry Under Steady State Condition

This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
Technical Paper

Analysis of a Novel Method for Low-Temperature Ammonia Production Using DEF for Mobile Selective Catalytic Reduction Systems

The worldwide introduction of new emission standards and new, more encompassing, legislating cycles have led to a need to increase both a selective catalytic reduction (SCR) system’s capacity and conversion efficiency. To this end, it is important for an SCR system to operate to the extremes of its temperature range which in many systems is currently limited by the temperature at which diesel exhaust fluid (DEF) can easily decompose without the formation of deposits. This paper analyses a new system for low-temperature ammonia provision to the SCR reaction. Ammonia Creation and Conversion Technology (ACCT) uses pressure controlled thermal decomposition of DEF followed by re-formation to form a fluid with greater volatility and the same ammonia density as DEF conforming to ISO 22241. A dosing strategy can then be employed where any combination of DEF or ACCT solution can be used to provide ammonia as a reductant over the whole activity temperature range of a catalyst.
Technical Paper

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

Application of Multi-Objective Optimization Techniques for Improved Emissions and Fuel Economy over Transient Manoeuvres

This paper presents a novel approach to augment existing engine calibrations to deliver improved engine performance during a transient, through the application of multi-objective optimization techniques to the calibration of the Variable Valve Timing (VVT) system of a 1.0 litre gasoline engine. Current mature calibration approaches for the VVT system are predominantly based on steady state techniques which fail to consider the engine dynamic behaviour in real world driving, which is heavily transient. In this study the total integrated fuel consumption and engine-out NOx emissions over a 2-minute segment of the transient Worldwide Light-duty Test Cycle are minimised in a constrained multi-objective optimisation framework to achieve an updated calibration for the VVT control. The cycle segment was identified as an area with high NOx emissions.
Technical Paper

Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes

Homogeneous charge compression ignition (HCCI), combustion has the potential to be highly efficient and to produce low NOx, carbon dioxide and particulate matter emissions, but experiences problems with cold start, running at idle and producing high power density. A solution to these is to operate the engine in a ‘hybrid mode’, where the engine operates in spark ignition mode at cold start, idle and high loads and HCCI mode elsewhere during the drive cycle, demanding a seamless transition between the two modes of combustion through spark assisted controlled auto ignition. Moreover; HCCI requires considerable control to maintain consistent start of combustion and heat release rate, which has thus far limited HCCI's practical application. In order to provide a suitable control method, a feedback signal is required.
Technical Paper

The HOTFIRE Homogeneous GDI and Fully Variable Valve Train Project - An Initial Report

There is a great deal of interest in new technologies to assist in reducing the CO2 output of passenger vehicles, as part of the drive to meet the limits agreed by the EU and the European Automobile Manufacturer's Association ACEA, itself a result of the Kyoto Protocol. For the internal combustion engine, the most promising of these include gasoline direct injection, downsizing and fully variable valve trains. While new types of spray-guided gasoline direct injection (GDI) combustion systems are finally set to yield the level of fuel consumption improvement which was originally promised for the so-called ‘first generation’ wall- and air-guided types of GDI, injectors for spray-guided combustion systems are not yet in production to help justify the added complication and cost of the NOx trap necessary with a stratified combustion concept.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

The Turboexpansion Concept - Initial Dynamometer Results

An expedient route to improving in-vehicle fuel economy in 4-stroke cycle engines is to reduce the swept volume of an engine and run it at a higher BMEP for any given output. The full-load performance of a larger capacity engine can be achieved through pressure charging. However, for maximum fuel economy, particularly at part-load, the expansion ratio, and consequently the compression ratio (CR) should be kept as high as possible. This is at odds with the requirement in pressure-charged gasoline engines to reduce the CR at higher loads due to the knock limit. In earlier work, the authors studied a pressure-charging system aimed at allowing a high CR to be maintained at all times. The operation of this type of system involves deliberately over-compressing the charge air, cooling it at the elevated pressure and temperature, and then expanding it down to the desired plenum pressure, ensuring a plenum temperature which can potentially become sub-atmospheric at full-load.
Technical Paper

The Characterisation of a Centrifugal Separator for Engine Cooling Systems

It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Journal Article

Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels

Natural gas as an alternative fuel offers the potential of clean combustion and emits relatively low CO2 emissions. The main constitute of natural gas is methane. Historically, the slow burning speed of methane has been a major concern for automotive applications. Literature on experimental methane-gasoline Dual Fuel (DF) studies on research engines showed that the DF strategy is improving methane combustion, leading to an enhanced initial establishment of burning speed even compared to that of gasoline. The mechanism of such an effect remains unclear. In the present study, pure methane (representing natural gas) and PRF95 (representing gasoline) were supplied to a constant volume combustion vessel to produce a DF air mixture. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Experiments have been conducted at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5 and 10 bar and a temperature of 373K.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Technical Paper

The Value of Component in the Loop Approaches to Exhaust Energy Management in Hybrid Vehicles

Recent work on thermo-electric (TE) systems has highlighted the need for refined heat transfer design as well as the long standing need for improved materials performance. Recent work on heat transfer for TE systems has shown that enhanced heat transfer is needed over and above what would normally be seen in a vehicle exhaust system. In particular a better understanding of flow development and boundary layer behaviour is needed to support new design proposals. In the meantime, recent work in TE materials suggests that with the use of skutterudites significant performance benefits can accrue over existing materials. The current generation of TE materials have non-dimensional thermoelectric figure of merit (ZT) values of around 1. Skutterudites have been demonstrated to have ZT values of about 1.4 and can maintain these values over a wider temperature range than do existing materials through the engineering of the TE device.
Technical Paper

The State of the Art in Selective Catalytic Reduction Control

Selective Catalytic Reduction (SCR) is a leading aftertreatment technology for the removal of nitrogen oxide (NOx) from exhaust gases (DeNOx). It presents an interesting control challenge, especially at high conversion, because both reagents (NOx and ammonia) are toxic, and therefore an excess of either is highly undesirable. Numerous system layouts and control methods have been developed for SCR systems, driven by the need to meet future emission standards. This paper summarizes the current state-of-the-art control methods for the SCR aftertreatment systems, and provides a structured and comprehensive overview of the research on SCR control. The existing control techniques fall into three main categories: traditional SCR control methods, model-based SCR control methods, and advanced SCR control methods. For each category, the basic control technique is defined. Further techniques in the same category are then explained and appreciated for their relative advantages and disadvantages.