Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines

Development status and insight on a “research level” piezoelectric direct injection fuel injection system for prototype hydrogen Internal Combustion Engines (ICEs) is described. Practical experience accumulated from specialized material testing, bench testing and engine operation have helped steer research efforts on the fuel injection system. Recent results from a single cylinder engine are also presented, including demonstration of 45% peak brake thermal efficiency. Developing ICEs to utilize hydrogen can result in cost effective power plants that can potentially serve the needs of a long term hydrogen roadmap. Hydrogen direct injection provides many benefits including improved volumetric efficiency, robust combustion (avoidance of pre-ignition and backfire) and significant power density advantages relative to port-injected approaches with hydrogen ICEs.
Journal Article

Hydrogen DI Dual Zone Combustion System

Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Technical Paper

Port Injection of Water into a DI Hydrogen Engine

Hydrogen fueled internal combustion engines have potential for high thermal efficiencies; however, high efficiency conditions can produce high nitrogen oxide emissions (NOx) that are challenging to treat using conventional 3-way catalysts. This work presents the results of an experimental study to reduce NOx emissions while retaining high thermal efficiencies in a single-cylinder research engine fueled with hydrogen. Specifically, the effects on engine performance of the injection of water into the intake air charge were explored. The hydrogen fuel was injected into the cylinder directly. Several parameters were varied during the study, including the amount of water injected into the intake charge, the amount of fuel injected, the phasing of the fuel injection, the number of fuel injection events, and the ignition timing. The results were compared with expectations for a conventionally operated hydrogen engine where load was controlled through changes in equivalence ratio.
Technical Paper

Direct In-cylinder Injection of Water into a PI Hydrogen Engine

Injecting liquid water into a fuel/air charge is a means to reduce NOx emissions. Such strategies are particularly important to hydrogen internal combustion engines, as engine performance (e.g., maximum load) can be limited by regulatory limits on NOx. Experiments were conducted in this study to quantify the effects of direct injection of water into the combustion chamber of a port-fueled, hydrogen IC engine. The effects of DI water injection on NOx emissions, load, and engine efficiency were determined for a broad range of water injection timing. The amount of water injected was varied, and the results were compared with baseline data where no water injection was used. Water injection was a very effective means to reduce NOx emissions. Direct injection of water into the cylinder reduced NOx emissions by 95% with an 8% fuel consumption penalty, and NOx emissions were reduced by 85% without any fuel consumption penalty.