Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Extending SAE J300 to Viscosity Grades below SAE 20

2010-10-25
2010-01-2286
The SAE Engine Oil Viscosity Classification (EOVC) Task Force has been gathering data in consideration of extending SAE J300 to include engine oils with high temperature, high shear rate (HTHS) viscosity below the current minimum of 2.6 mPa⋅s for the SAE 20 grade. The driving force for doing so is fuel economy, although it is widely recognized that hardware durability can suffer if HTHS viscosity is too low. Several Japanese OEMs have expressed interest in revising SAE J300 to allow official designation of an engine oil viscosity category with HTHS viscosity below 2.6 mPa⋅s to enable the development of ultra-low-friction engines in the future. This paper summarizes the work of the SAE EOVC Low Viscosity Grade Working Group comprising members from OEMs, oil companies, additive companies and instrument manufacturers to explore adoption of one or more new viscosity grades.
Technical Paper

Development of a Laboratory Hypoid Gear Spalling Test

1997-11-17
973252
The laboratory tests used to define API GL5 have been the cornerstone of gear oil development for well over thirty years. In that time they have served the market very well. Lubricants developed with these test methods have provided adequate protection of axle components from severe wear, scuffing, corrosion, and oxidation. Recently, however, there has been an increasing trend toward extended drain intervals which changes the picture. Coupled with longer oil drain intervals there is a continuing increase of power throughput in the equipment. The combination of increased power and extended service life places significant stress on the oil such that the load carrying ability and thermal and oxidative stability could be greatly diminished under these conditions. During the past ten years the industry has been actively working toward a new gear oil specification that will address the performance needs of today's vehicles.
Technical Paper

Development of Heavy Duty Diesel Real World Drive Cycles for Fuel Economy Measurements

2013-10-14
2013-01-2568
Over several years, a fuel economy test measurement technique has been developed to highlight the magnitude of benefits expected in real world applications of different heavy-duty vehicle (HDV) engine oils in an operating vehicle. This method provides discriminatory results using an alternative to the widely used gravimetric fuel measurement methodology of Brake Specific Fuel Consumption (BSFC), in order to measure gains of <2% in a more repeatable manner. For the results to prove meaningful to the wider commercial audience, such as vehicle operators, original equipment manufacturers and oil providers, the systemic test vehicle operating conditions need to closely represent on-road conditions experienced on a daily basis by long haul, heavy duty diesel vehicles. This paper describes the parameters, necessary measures and methodologies required to record real world data and create representative proving ground test cycles.
Technical Paper

A Vegetable Oil Based Tractor Lubricant

1994-09-01
941758
Increased awareness of preserving the environment has motivated the development of a wide variety of environmentally compatible products. Such products include environmentally compatible lubricants. Sale and use of these types of lubricants illustrates diligence by the lubricant manufacturer, original equipment manufacturer (OEM), and the consumer in contributing to a cleaner environment. The use of this type of lubricant could enhance the image of the lubricant manufacturer and vendor as well as the equipment manufacturer who employs such a fluid. To base such a lubricant on a vegetable oil creates a product environmentally friendly by its farming origin and its ability to readily biodegrade if released. No machinery is so uniquely suited to using vegetable oil based lubricants as agricultural equipment. Since this equipment is particularly close to the environment, the lubricant can easily come in contact with the soil, ground water, and crops.
Technical Paper

Fundamental Studies on ATF Friction I.

1997-05-01
971621
Automatic transmission clutches are complex tribological systems. Frictional performance is controlled by the interaction of base fluids, additive components, composition clutches, and steel reaction plates with varying energy inputs and thermal stresses in an oxidizing environment. This paper, rather than addressing fully formulated fluid performance in such a system, takes a more fundamental approach where the number of system variables is reduced and the relative effects of formulation variables on system performance can be better examined. Relationships among observed friction performance, system oxidation, friction member condition, and representative performance additives are explored using a synthetic base fluid and a conventionally refined mineral base fluid.
Technical Paper

A Copper-Lead Bearing Corrosion Test Replacement

1997-05-01
971623
The Cooperative Lubrication Research (CLR) Oil Test Engine, usually called the L-38, has been used for nearly 25 years to evaluate copper-lead journal bearing protection of gasoline rnotoroils under high-temperature, heavy-duty conditions. The test is sensitive to aggressive surface active additives that may encourage bearing corrosion. The L-38 also provides an estimate of oil durability, assessing the resistance of an oil to the accumulation of acidic by-products of combustion that could attack copper-lead bearings. However, the L-38 engine dynamometer test uses a heavily leaded gasoline that is no longer representative of the commercial fuels available in North America, Europe, or Japan. Rather than discard the L-38, this paper describes work to modify the L-38 procedure to run with unleaded gasoline.
Technical Paper

ATF Nylon Degradation

1997-05-01
971625
Nylon is used as a material in the design of various components of automatic transmissions. Pump rotor guides and thrust washers are among components designed from nylon. Nylon must be compatible with automatic transmission fluid (ATF). An immersion test using nylon strips in various test fluids was developed. The nylon color change was independent of the physical properties (as measured by change of tensile force) of the material. Testing indicated that nylon color change is catalyzed by oxidation effects, and the change in tensile strength is related to thermal degradation. An automatic transmission fluid (ATF) containing calcium sulfonate detergent showed better oxidation resistance and caused less loss of tensile strength in nylon 6 (PA6).
Technical Paper

Test Techniques for the Evaluation of Lubricant Effects on Axle Break-In Temperature-Investigation of Test Techniques with a Domestic (USA) Sedan

1976-02-01
760328
High lubricant temperatures generated during the break-in of new differential assemblies has been of concern among original equipment manufacturers (OEM's). Many tests have been devised to measure the effects of speed, load and lubricant on the temperature generated in the axle. The major problem confronting the use of these tests has been a lack of repeatability and/or reproducibility. Recently, a European OEM axle lubricant break-in test procedure using a European sedan test vehicle has demonstrated highly repeatable and reproducible results. Test work had been limited to the European sedan. The applicability of the European OEM test procedure to a larger domestic U.S. vehicle was questioned. This paper discusses the applicability of the European test to a domestic sedan. Additionally, two other axle break-in test procedures were conducted using the same domestic sedan test vehicle. Three sulfur-phosphorus multi-purpose gear lubricants were evaluated.
Technical Paper

Improved Lubricants Extend Diesel Engine Life

1985-11-11
852178
Diesel engine oils containing a balanced additive package composed of oxidation, corrosion, wear, rust and foam inhibitors plus ashless dispersants and metallic detergents provide long engine life. The major factor is metallic detergent component which contributes alkalinity to the oil and has a direct effect on engine cleanliness and durability. Increased detergent alkalinity reduces deposits and wear, resulting in improved oil control and longer engine life. Careful selection of detergent components is required to control cylinder-bore polishing in diesel engines to assure optimum antiwear and oil control performance.
X