Refine Your Search

Topic

Author

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Methodology for Monitoring On-Road CO2 Emissions Compliance in Passenger Vehicles

2020-06-30
2020-37-0034
The European Union road transport CO2 emissions regulation foresees mandatory targets for passenger vehicles. However, several studies have shown that there is a divergence between official and real-world values that could range up to 40% compared to the NEDC reference value. The introduction of the Worldwide Harmonized Test Protocol (WLTP) limited this divergence, but it is uncertain whether it can adequately address the problem, particularly considering future evolutions of vehicle technology. In order to address this issue, the recent EU CO2-standards regulation introduces the monitoring of on-road fuel consumption and subsequently CO2 emissions by utilizing On-Board Fuel Consumption Meters (OBFCM). In the near future, all vehicles should provide instantaneous and lifetime-cumulative fuel consumption signals at the diagnostics port. Currently, the fuel consumption signal is not always available.
Technical Paper

An Experimental Methodology for Measuring Resistance Forces of Light-Duty Vehicles under Real-World Conditions and the Impact on Fuel Consumption

2020-04-14
2020-01-0383
A vital element of any vehicle-certification test is the use of representative values for the vehicle resistance forces. In most certification procedures, including the WLTP recently adopted by the EU, the latter is achieved mainly through coast down tests. Subsequently, the resistance values measured are used for setting up the chassis-dyno resistances applied during the laboratory measurements. These reference values are obtained under controlled conditions, while a series of corrections are applied to make the test procedure more repeatable and reproducible. In real driving, the actual vehicle road loads are influenced by a series of factors leading to a divergence between the certified fuel consumption values, and the real-world ones. An approach of calculating representative road loads during on-road tests can help to obtain a more unobstructed view of vehicle efficiency and, when needed, confirm the officially declared road loads.
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements

2010-04-12
2010-01-0825
In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
Technical Paper

Model Predictive Control of a Combined EGR/SCR HD Diesel Engine

2010-04-12
2010-01-1175
Achieving upcoming HD emissions legislation, Euro VI/EPA 10, is a challenge for all engine manufacturers. A likely solution to meet the NOx limit is to use a combination of EGR and SCR. Combining these two technologies poses new challenges and possibilities when it comes to optimization and calibration. Using a complete system approach, i.e., considering the engine and the aftertreatment system as a single unit, is important in order to achieve good performance. Optimizing the complete system is a tedious task; first there are a large number of variables which affect both emissions and fuel consumption (injection timing, EGR rate, urea dosing, injection pressure, pilot/post injections, for example). Secondly, the chemical reactions in the SCR catalyst are substantially slower than the dynamics of the diesel engine and the rest of the system, making the optimization problem time dependent.
Technical Paper

Vehicle Cooling Systems for Reducing Fuel Consumption and Carbon Dioxide: Literature Survey

2010-05-05
2010-01-1509
The number of vehicles in use is increasing from year to year. It causes more fuel/energy to be consumed, and more carbon dioxide or other exhaust gases are released to the environment. But the legislations on carbon dioxide emissions have become stricter than before. In the overall effort to achieve sustainability, advanced technological solutions have to be developed to reduce fuel consumption and carbon dioxide emissions from vehicles. More than half of the energy in vehicles is lost as heat to the different cooling systems (engine cooling system, air conditioning, frictional components cooling) and exhaust gas. Reducing the amount of energy lost in vehicle cooling systems will enhance the fuel efficiency of the vehicles. This paper presents a literature survey of different cooling systems in vehicles, which includes the engine cooling system, air conditioning of the compartment, the electronic cooling system and cooling of frictionally heated parts.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

CFD Investigation of Heat Transfer in a Diesel Engine with Diesel and PPC Combustion Modes

2011-08-30
2011-01-1838
In this study, an investigation was made on a heavy duty diesel engine using both conventional diesel combustion mode and a partially premixed combustion (PPC) mode. A segment mesh was built up and modeled using the commercial CFD code AVL FIRE, where only the closed volume cycle, between IVC and EVO, was modeled. Both combustion modes were validated using experimental data, before a number of heat flux boundary conditions were applied. These conditions were used to evaluate the engine response in terms of engine performance and emission levels for the different percentage of heat rejection. The engine performance was measured in terms of specific fuel consumption and estimated power output, while the calculated net soot and accumulated NOx mass fractions were used for comparing the emission levels. The results showed improved efficiency for both combustion types, but only the PPC combustion mode managed that without increasing the production of NOx emissions severely.
Technical Paper

Regeneration of DPF at Low Temperatures with the Use of a Cerium Based Fuel Additive

1996-02-01
960135
A light duty truck with a naturally aspirated engine was equipped with a DPF (changing the exhaust pipe and eliminating the muffler) and operated on fuel doped with a cerium based additive in various concentrations. Tests were carried out on chassis dynamometer using the European urban cycle, but also under city driving conditions with maximum speeds up to 50 km/h and exhaust gas temperature up to 300°C. Under these conditions, it was observed that filter regeneration was always possible at relatively high particulate accumulation in the filter, while the effect on fuel consumption (as measured over the emission test cycles) was not detectable, compared to baseline data of the vehicle. Change in driving conditions from slow urban to highway with highly loaded trap led to spontaneous trap regeneration at higher temperatures, without effect on fuel consumption. This paper documents the operation of a fully passive DPF system for diesel light duty vehicles.
Technical Paper

Assessment of Components Sizing and Energy Management Algorithms Performance for a Parallel PHEV

2022-06-14
2022-37-0015
In Plug in hybrid electric vehicles (PHEVs), the management of the main drivetrain components and the shift between pure electric and hybrid propulsion is decided by the on-board energy management system (EMS). The EMS decisions have a direct impact on CO2 emissions and need to be optimized to achieve as low emissions as possible. This paper presents optimization methods for EMS algorithms of a parallel P2 PHEV. Two different supervisory control algorithms are examined, employing simulations on a validated PHEV platform. An Equivalent Consumption Minimization Strategy (ECMS) algorithm is implemented and compared to a rule-based one, the latter derived by back-engineering of available experimental data. The different EMS algorithms are analyzed and compared on an equal basis in terms of distance, demanded energy and state of charge levels over different driving cycles.
Technical Paper

A Model Based Definition of a Reference CO2 Emissions Value for Passenger Cars under Real World Conditions

2018-05-30
2018-37-0031
With the adoption of the Worldwide harmonized Light Vehicles Test Procedure (WLTP) and the Real Driving Emissions (RDE) regulations for testing and monitoring the vehicle pollutant emissions, as well as CO2 and fuel consumption, the gap between real world and type approval performances is expected to decrease to a large extent. With respect to CO2, however, WLTP is not expected to fully eliminate the reported 40% discrepancy between real world and type approval values. This is mainly attributed to the fact that laboratory tests take place under average controlled conditions that do not fully replicate the environmental and traffic conditions experienced over daily driving across Europe. In addition, any uncertainties of a pre-defined test protocol and the vehicle operation can be optimized to lower the CO2 emissions of the type approval test. Such issues can be minimized in principle with the adoption of a real-world test for fuel consumption.
Technical Paper

Development of a Template Model and Simulation Approach for Quantifying the Effect of WLTP Introduction on Light Duty Vehicle CO2 Emissions and Fuel Consumption

2015-09-06
2015-24-2391
The paper describes the development of a modelling approach to simulate the effect of the new Worldwide harmonized Light duty Test Procedure (WLTP) on the certified CO2 emissions of light duty vehicles. The European fleet has been divided into a number of segments based on specific vehicle characteristics and technologies. Representative vehicles for each segment were selected. A test protocol has been developed in order to generate the necessary data for the validation of the vehicle simulation models. In order to minimize the sources of uncertainty and the effects of flexibilities, a reference “template model” was developed to be used in the study. Subsequently, vehicle models were developed using AVL Cruise simulation software based on the above mentioned template model. The various components and sub-modules of the models, as well as their input parameters, have been defined with the support of the respective OEMs.
Technical Paper

Use of a PPS Sensor in Evaluating the Impact of Fuel Efficiency Improvement Technologies on the Particle Emissions of a Euro 5 Diesel Car

2014-04-01
2014-01-1601
The effect of “Start & Stop” and “Gear Shift Indicator” - two widespread fuel saving technologies - on fuel consumption and particle emissions of a Euro 5 passenger car is evaluated in this paper. The vehicle was subjected to a series of different driving cycles, including the current (NEDC) and future (WLTC) cycles implemented in the European type approval procedure at cold and hot start condition and particle number was measured with an AVL Particle Counter. In addition, we have utilized two Pegasor Particle Sensor units positioned in different locations along the sampling line to assess the impact of the sampling location on the particle characteristics measured during highly transient events. The results showed that the particle number emission levels over the WLTC were comparable to the NEDC ones, whereas NOx emissions were more than twofold higher. Both fuel saving technologies can lead to reduced fuel consumption and, subsequently CO2 emissions, in the order of 5%.
Technical Paper

Emissions Optimization Potential of a Diesel Engine Running on HVO: A Combined Experimental and Simulation Investigation

2019-09-09
2019-24-0039
The present work investigates a number of recalibration possibilities of a common rail turbocharged diesel engine, aiming at the improvement of its emissions performance and fuel consumption (FC), with Hydrotreated Vegetable Oil (HVO). Initially, steady-state experimental data with nominal engine settings revealed HVO benefits as a drop-in fuel. Under these conditions, pure HVO results in lower engine-out PM emissions, lower CO2 emissions, and lower mass-based FC, while the respective NOx emissions present a mixed trend. In mid loads and speeds NOx emissions of HVO are lower while at higher loads and speeds are slightly higher compared to conventional diesel. At a second step, a combustion model was developed, in order to investigate the possible re-adjustments of IT (Injection Timing) and EGR (Exhaust Gas Recirculation) settings in order to exploit HVO’s properties for further reduction of emissions and FC.
Technical Paper

A Generalized Component Efficiency and Input-Data Generation Model for Creating Fleet-Representative Vehicle Simulation Cases in VECTO

2019-04-02
2019-01-1280
The Vehicle Energy Consumption calculation Tool (VECTO) is used for the official calculation and reporting of CO2 emissions of HDVs in Europe. It uses certified input data in the form of energy or torque loss maps of driveline components and engine fuel consumption maps. Such data are proprietary and are not disclosed. Any further analysis of the fleet performance and CO2 emissions evolution using VECTO would require generic inputs or reconstructing realistic component input data. The current study attempts to address this issue by developing a process that would create VECTO input files based as much as possible on publicly available data. The core of the process is a series of models that calculate the vehicle component efficiency maps and produce the necessary VECTO input data. The process was applied to generate vehicle input files for rigid trucks and tractor-trailers of HDV Classes 4, 5, 9 and 10.
Technical Paper

Study of Stoichiometric and Lean Combustion in a Spark Ignition, Direct Injection Optical Engine Using E10 and ETBE20 Fuels

2022-08-30
2022-01-1003
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility.
Technical Paper

The Potential of On-Board Data Monitoring for the Characterization of Real-World Vehicle Fuel and Energy Consumption and Emissions

2023-08-28
2023-24-0113
The upcoming Euro 7 regulation introduces the concept of continuous On-Board (emission) Monitoring (OBM), while On-Board Fuel/Energy Consumption Monitoring (OBFCM) is already an integral part of modern vehicles. The current work aims to assess whether on-board data could provide sufficient information to characterize real-world vehicle performance and emissions. Nine Euro 6d-ISC-FCM passenger cars were used, covering a wide range of powertrain technologies, from conventional gasoline and diesel to hybrid (HEV) and plug-in hybrid (PHEV) electric vehicles. Three vehicles were thoroughly tested in the laboratory and on the road, aiming at evaluating in detail the on-board data monitoring system. The evaluation concerned OBFCM device recordings of fuel consumed and distance travelled, as well as tailpipe NOx emissions and exhaust mass flow rate.
X