Refine Your Search

Topic

Author

Search Results

Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Technical Paper

Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion

2010-05-05
2010-01-1471
The current research focuses in understanding how inlet pressure, EGR, combustion phasing, engine speed and pilot main ratio are affecting the main parameters of the combustion (e.g. efficiency, NOx, soot, maximum pressure rise rate) in the novel concept of injecting high octane number fuels in partially premixed combustion. The influence of the above mentioned parameters was studied by performing detailed sweeps at 32 bar fuel MEP (c.a. 16-18 bar gross IMEP); three different kinds of gasoline were tested (RON: 99, 89 and 69). The experiments were ran in a single cylinder heavy duty engine; Scania D12. At the end of these sweeps the optimized settings were computed in order to understand how to achieve high efficiency, low emissions and acceptable maximum pressure rise rate.
Technical Paper

Extending the Operating Region of Multi-Cylinder Partially Premixed Combustion using High Octane Number Fuel

2011-04-12
2011-01-1394
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels to extend the ignition delay so that air and fuel mix prior to combustion to a larger extent than with conventional diesel combustion. This paper investigates the operating region of single injection PPC for three different fuels; Diesel, low octane gasoline with similar characteristics as diesel and higher octane standard gasoline. Limits in emissions are defined and the highest load that fulfills these requirements is determined. The investigation shows the benefits of using high octane number fuel for Multi-Cylinder PPC. With high octane fuel the ignition delay is made longer and the operating region of single injection PPC can be extended significantly. Experiments are carried out on a multi-cylinder heavy-duty engine at low, medium and high speed.
Journal Article

Some Effects of Fuel Autoignition Quality and Volatility in Premixed Compression Ignition Engines

2010-04-12
2010-01-0607
Previous work has shown that it may be advantageous to use gasoline type fuels with long ignition delays compared to today's diesel fuels in compression ignition engines. In the present work we investigate if high volatility is also needed along with low cetane (high octane) to get more premixed combustion leading to low NO and smoke. A single-cylinder light-duty compression ignition engine is run on four fuels in the diesel boiling range and three fuels in the gasoline boiling range. The lowest cetane diesel boiling range fuel (DCN = 22) also has very high aromatic content (75%vol) but the engine can be run on this to give very low NO (≺ 0.4 g/kWh) and smoke (FSN ≺ 0.1), e.g,. at 4 bar and 10 bar IMEP at 2000 RPM like the gasoline fuels but unlike the diesel fuels with DCNs of 40 and 56. If the combustion phasing and delay are matched for any two fuels at a given operating condition, their emissions behavior is also matched regardless of the differences in volatility and composition.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Using Oxygenated Gasoline Surrogate Compositions to Map RON and MON

2014-04-01
2014-01-1303
Gasoline fuels are complex mixtures which consist of more than 200 different hydrocarbon species. In order to decrease the chemical and physical complexity, oxygenated surrogate components were used to enhance the fundamental understanding of partially premixed combustion (PPC). The ignition quality of a fuel is measured by octane number. There are two methods to measure the octane number: research octane number (RON) and motor octane number (MON). In this paper, RON and MON were measured for a matrix of n-heptane, isooctane, toluene, and ethanol (TERF) blends spanning a wide range of octane number between 60.6 and 97. First, regression models were created to derive RON and MON for TERF blends. The models were validated using the standard octane test for 17 TERF blends. Second, three different TERF blends with an ignition delay (ID) of 8 degrees for a specific operating condition were determined using a regression model.
Technical Paper

Effects of Fuel Temperature and Ambient Pressure on a GDI Swirled Injector Spray

2000-06-19
2000-01-1901
The effects of fuel temperature on both the geometry and the droplet size and velocity of a GDI swirled injector spray were investigated by means of visualizations and PDA measurements. Isooctane was used as model fuel and was injected in a quiescent bomb at injection pressure of 7 MPa. Bomb pressure ranged from 40 kPa to 800 kPa with injector nozzle temperature ranging from 293 K to 393 K. A drastic change in spray geometry was observed when conditions above the vaporization curve were reached. The temperature increase has two macroscopic effects on the spray geometry: at the nozzle exit the liquid flash boiling strongly enlarges the spray angle, at a certain distance from the nozzle the air entrainment collapses the spray. Raising the fuel temperature up to flash boiling conditions causes a significant decrease of the average droplet size.
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

2015-09-06
2015-24-2418
The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion from Low to High Load

2010-04-12
2010-01-0871
The behavior of Ethanol and seven fuels in the boiling point range of gasoline but with an Octane Number spanning from 69 to 99 was investigated in Partially Premixed Combustion. A load sweep was performed from 5 to 18 bar gross IMEP at 1300 rpm. The engine used in the experiments was a single cylinder Scania D12. To allow high load operations and achieve sufficient mixing, the compression ratio was decreased from the standard 18:1 to 14.3:1. It was shown that by using only 50% of EGR it is possible to achieve NOx below 0.30 g/kWh even at high loads. At 18 bar IMEP soot was in the range of 1-2 FSN for the gasoline fuels while it was below 0.06 FSN with Ethanol. The use of high boost combined with relatively short combustion duration allowed reaching gross indicated efficiencies in the range of 54 - 56%. At high load the partial stratified mixture allowed to keep the maximum pressure rise rate below 15 bar/CAD with most of the fuels.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Technical Paper

CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines

2019-09-09
2019-24-0095
Gasoline, direct injection engines represent one of the most widely adopted powertrain for passenger cars. However, further development efforts are necessary to meet the future fuel consumption and emission standards imposing an efficiency increase and a reduction of particulate matter emissions. Within this context, computational fluid dynamics is nowadays a consolidated tool to support engine design; this work is focused on the development of a set of CFD models for the prediction of combustion in modern GDI engines. The one-equation Weller model coupled with a zero-dimensional approach to handle initial flame kernel growth was applied to predict flame propagation. To account for mixture fraction fluctuations which might lead to the presence of soot precursor species, burned gas chemical composition is computed using tabulated kinetics with a presumed probability density function.
Journal Article

Improved Analytical Model of an Outer Rotor Surface Permanent Magnet Machine for Efficiency Calculation with Thermal Effect

2017-03-28
2017-01-0185
In this paper, an improved analytical model accounting for thermal effects in the electromagnetic field solution as well as efficiency map calculation of an outer rotor surface permanent magnet (SPM) machine is described. The study refers in particular to an in-wheel motor designed for automotive electric powertrain. This high torque and low speed application pushes the electric machine close to its thermal boundary, which necessitates estimates of winding and magnet temperatures to update the winding resistance and magnet remanence in the efficiency calculation. An electromagnetic model based on conformal mapping is used to compute the field solution in the air gap. The slotted air-gap geometry is mapped to a simpler slotless shape, where the field solution can be obtained by solving Laplace's equation for scalar potential. The canonical slottless domain solution is mapped back to the original domain and verified with finite element model (FEM) results.
Technical Paper

Numerical Simulation of the ECN Spray A Using Multidimensional Chemistry Coordinate Mapping: n-Dodecane Diesel Combustion

2012-09-10
2012-01-1660
A three dimensional numerical simulation of the ECN “Spray A” is presented. Both primary and secondary breakup of the spray are included. The fuel is n-Dodecane. The n-Dodecane kinetic mechanism is modeled using a skeletal mechanism that consists of 103 species and 370 reactions [9]. The kinetic mechanism is computationally heavy when coupled with three dimensional numerical simulations. Multidimensional chemistry coordinate mapping (CCM) approach is used to speedup the simulation. CCM involves two-way mapping between CFD cells and a discretized multidimensional thermodynamic space, the so called multidimensional chemistry coordinate space. In the text, the cells in the discretized multidimensional thermodynamic space are called zone to discriminate them from the CFD cells. In this way, the CFD cells which are at the similar thermodynamic state are identified and grouped into a unique zone. The stiff ODEs operates only on the zones containing at least one CFD cell.
Technical Paper

LES of Flow Processes in an SI Engine Using Two Approaches: OpenFoam and PsiPhi

2014-04-01
2014-01-1121
In this study two different simulation approaches to large eddy simulation of spark-ignition engines are compared. Additionally, some of the simulation results are compared to experimentally obtained in-cylinder velocity measurements. The first approach applies unstructured grids with an automated meshing procedure, using OpenFoam and Lib-ICE with a mapping approach. The second approach applies the efficient in-house code PsiPhi on equidistant, Cartesian grids, representing walls by immersed boundaries, where the moving piston and valves are described as topologically connected groups of Lagrangian particles. In the experiments, two-dimensional two-component particle image velocimetry is applied in the central tumble plane of the cylinder of an optically accessible engine. Good agreement between numerical results and experiment are obtained by both approaches.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
X