Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Modeling the Kinetic and Thermal Interaction of UWS Droplets Impinging on a Flat Plate at Different Exhaust Gas Conditions

2021-09-05
2021-24-0079
The selective catalytic reduction has seen widespread adoption as the best technology to reduce the NOx emissions from internal combustion engines, particularly for Diesels. This technology uses ammonia as a reducing agent, which is obtained injecting an ammonia carrier into the exhaust gas stream. The dosing of the ammonia carrier, usually AdBlue, is the major concern during the design and engine calibration phases, since the interaction between the injected liquid and the components of the exhaust system can lead to the undesired formation of solid deposits. To avoid this, the thermal and kinematic interaction between the spray and the components of the after treatment system (ATS) must be modeled accurately. In this work, the authors developed a Conjugate Heat Transfer (CHT) framework to model the kinetic and thermal interaction among the spray, the eventual liquid layer and the pipe walls.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Vehicle Cooling Systems for Reducing Fuel Consumption and Carbon Dioxide: Literature Survey

2010-05-05
2010-01-1509
The number of vehicles in use is increasing from year to year. It causes more fuel/energy to be consumed, and more carbon dioxide or other exhaust gases are released to the environment. But the legislations on carbon dioxide emissions have become stricter than before. In the overall effort to achieve sustainability, advanced technological solutions have to be developed to reduce fuel consumption and carbon dioxide emissions from vehicles. More than half of the energy in vehicles is lost as heat to the different cooling systems (engine cooling system, air conditioning, frictional components cooling) and exhaust gas. Reducing the amount of energy lost in vehicle cooling systems will enhance the fuel efficiency of the vehicles. This paper presents a literature survey of different cooling systems in vehicles, which includes the engine cooling system, air conditioning of the compartment, the electronic cooling system and cooling of frictionally heated parts.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
Technical Paper

CFD Investigation of Heat Transfer in a Diesel Engine with Diesel and PPC Combustion Modes

2011-08-30
2011-01-1838
In this study, an investigation was made on a heavy duty diesel engine using both conventional diesel combustion mode and a partially premixed combustion (PPC) mode. A segment mesh was built up and modeled using the commercial CFD code AVL FIRE, where only the closed volume cycle, between IVC and EVO, was modeled. Both combustion modes were validated using experimental data, before a number of heat flux boundary conditions were applied. These conditions were used to evaluate the engine response in terms of engine performance and emission levels for the different percentage of heat rejection. The engine performance was measured in terms of specific fuel consumption and estimated power output, while the calculated net soot and accumulated NOx mass fractions were used for comparing the emission levels. The results showed improved efficiency for both combustion types, but only the PPC combustion mode managed that without increasing the production of NOx emissions severely.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction

2015-04-14
2015-01-0375
Diesel combustion is a very complex process, involving a reacting, turbulent and multi-phase flow. Furthermore, heavy duty engines operate mainly at medium and high loads, where injection durations are very long and cylinder pressure is high. Within such context, proper CFD tools are necessary to predict mixing controlled combustion, heat transfer and, eventually, flame wall interaction which might result from long injection durations and high injection pressures. In particular, detailed chemistry seems to be necessary to estimate correctly ignition under a wide range of operating conditions and formation of rich combustion products which might lead to soot formation. This work is dedicated to the identification of suitable methodologies to predict combustion in heavy-duty diesel engines using detailed chemistry.
Technical Paper

Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

2014-04-01
2014-01-1141
Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
This work describes the development of a computational model for the CFD simulation of compact heat exchangers applied for the oil cooling in internal combustion engines. Among the different cooler types, the present modeling effort will be focused on liquid-cooled solutions based on offset strip fins turbulators. The design of this type of coolers represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer, has been developed. The main problem is represented by the need of considering different scales in the simulation, ranging from the characteristic size of the turbulator geometry (tipically μm - mm) to the full scale of the overall device (typically cm - dm).
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

Development and Validation of SI Combustion Models for Natural-Gas Heavy-Duty Engines

2019-09-09
2019-24-0096
Flexible, reliable and consistent combustion models are necessary for the improvement of the next generation spark-ignition engines. Different approaches have been proposed and widely applied in the past. However, the complexity of the process involving ignition, laminar flame propagation and transition to turbulent combustion need further investigations. Purpose of this paper is to compare two different approaches describing turbulent flame propagation. The first is the one-equation flame wrinkling model by Weller, while the second is the Coherent Flamelet Model (CFM). Ignition is described by a simplified deposition model while the correlation from Herweg and Maly is used for the transition from the laminar to turbulent flame propagation. Validation of the proposed models was performed with experimental data of a natural-gas, heavy duty engine running at different operating conditions.
Technical Paper

Multi-Dimensional Simulation of Battery Degradation during Fast-Charging with Active Thermal Management

2023-08-28
2023-24-0157
The degradation rate of Li-ion batteries and therefore their useful life depends on many parameters, including temperature, charge/discharge rates, the chemistry and microstructure of electrodes. The importance of understanding these mechanisms explains the large interest in developing predictive electrochemical ageing models accounting for the known deterioration mechanisms, mainly related to SEI layer formation and Li-plating. Usually, these ageing models are developed and applied at cell level assuming perfect uniformity in all dimensions apart from the through-plane direction. In this work, we extend the model to all dimensions within the cell to account for intra-cell non-uniformities in terms of local temperature and current. However, the temperature distribution of a cell within a battery pack depends on the interaction with its environment, which typically involves active cooling via an external fluid circulation within a channel network.
Technical Paper

Modeling the Impact of Thermal Management on Time and Space-Resolved Battery Degradation Rate

2024-04-09
2024-01-2675
The degradation rate of a Li-ion battery is a complex function of temperature and charge/discharge rates over its lifetime. There is obviously a keen interest in predictive electrochemical ageing models that account for known degradation mechanisms, primarily linked with the Solid Electrolyte Interface (SEI) formation and Li-plating, which are highly dependent on the cell temperature. Typically, such ageing models are formulated and employed at pack or cell level, neglecting intra-cell and cell-to-cell thermal and electrical non-uniformities. On the other hand, thermal management techniques can mitigate ageing by maintaining the battery pack within the desired temperature window either by cooling or heating. Inevitably, the cooling of the battery pack by conventional heat exchangers will introduce temperature non-uniformities that may in turn result in undesired intra-cell and/or cell-to-cell health non-uniformities.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
X