Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Negative Valve Overlap on the Auto-ignition Process of Lean Ethanol/Air Mixture in HCCI-Engines

2010-10-25
2010-01-2235
This paper presents a computational study of the effects of fuel and thermal stratifications on homogenous charge compression ignition (HCCI) combustion process in a personal car sized internal combustion engine. Stratified HCCI conditions are generated using a negative valve overlap (NVO) technique. The aims of this study are to improve the understanding of the flow dynamics, the heat and mass transfer process and the onset of auto-ignition in stratified charges under different internal EGR rate and NVO conditions. The fuel is ethanol supplied through port-fuel injection; the fuel/air mixture is assumed to be homogenous before discharging to the cylinder. Large eddy simulation (LES) is used to resolve in detailed level the flow structures, and the mixing and heat transfer between the residual gas and fresh fuel/air mixtures in the intake and compression strokes.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
X