Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Simulation Study of a Turbocharged Two-Stroke Single Cylinder 425cc SI Engine

2021-09-05
2021-24-0003
An afterburner-assisted turbocharged single-cylinder 425 cc two-stroke SI-engine is described in this simulation study. This engine is intended as a Backup Range Extender (REX) application for heavy-duty battery electric vehicles (BEV) when external electric charging is unavailable. The 425 cc engine is an upscaled version of a 125 cc port-injected engine [26] which demonstrated that the selected technology could provide a specific power level of 400 kW/L and the desired 150 kW in a heavy duty BEV application. The 425 cc single cylinder two-stroke engine is an existing engine as one half of a 850 cc snowmobile engine. This simulation study includes upscaling of the swept volume, impact on engine speed and gas exchange properties. In the same way as for the 125cc engine [26], the exhaust gases reaches the turbine through a tuned exhaust pipe and an afterburner or oxidation catalyst.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

A Measurement of Fuel Filters’ Ability to Remove Soft Particles, with a Custom-Built Fuel Filter Rig

2020-09-15
2020-01-2130
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Technical Paper

Characterization of Partially Premixed Combustion

2006-10-16
2006-01-3412
Partially Premixed Combustion (PPC) provides the potential of simultaneous reduction of NOx and soot for diesel engines. This work attempts to characterize the operating range and conditions required for PPC. The characterization is based on the evaluation of emission and in-cylinder measurement data of engine experiments. It is shown that the combination of low compression ratio, high EGR rate and engine operation close to stoichiometric conditions enables simultaneous NOx and soot reduction at loads of 8bar, 12bar, and 15bar IMEP gross. The departure from the conventional NOx-soot trade-off curve has to be paid with a decline in combustion efficiency and a rise in HC and CO emissions. It is shown that the low soot levels of PPC come along with long ignition delay and low combustion temperature. A further result of this work is that higher inlet pressure broadens the operating range of Partially Premixed Combustion.
Journal Article

Cylinder Pressure-Based Virtual Sensor for In-Cycle Pilot Mass Estimation

2018-04-03
2018-01-1163
In this article, a virtual sensor for the estimation of the injected pilot mass in-cycle is proposed. The method provides an early estimation of the pilot mass before its combustion is finished. Furthermore, the virtual sensor can also estimate pilot masses when its combustion is incomplete. The pilot mass estimation is conducted by comparing the calculated heat release from in-cylinder pressure measurements to a model of the vaporization delay, ignition delay, and the combustion dynamics. A new statistical approach is proposed for the detection of the start of vaporization and the start of combustion. The discrete estimations, obtained at the start of vaporization and the start of combustion, are optimally combined and integrated in a Kalman Filter that estimates the pilot mass during the vaporization and combustion. The virtual sensor was programmed in a field programmable gate array (FPGA), and its performance tested in a Scania D13 Diesel engine.
Journal Article

Investigation of Particle Number Emission Characteristics in a Heavy-Duty Compression Ignition Engine Fueled with Hydrotreated Vegetable Oil (HVO)

2018-04-03
2018-01-0909
Diesel engines are one of the most important power generating units these days. Increasing greenhouse gas emission level and the need for energy security has prompted increasing research into alternative fuels for diesel engines. Biodiesel is the most popular among the alternatives for diesel fuel as it is biodegradable and renewable and can be produced domestically from vegetable oils. In recent years, hydrotreated vegetable oil (HVO) has also gained popularity due to some of its advantages over biodiesel such as higher cetane number, lower deposit formation, storage stability, etc. HVO is a renewable, paraffinic biobased alternative fuel for diesel engines similar to biodiesel. Unlike biodiesel, the production process for HVO involves hydrogen as catalyst instead of methanol which removes oxygen content from vegetable oil.
Technical Paper

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

2007-04-16
2007-01-0288
Urban traffic involves frequent acceleration and deceleration. During deceleration, the energy previously used to accelerate the vehicle is mainly wasted on heat generated by the friction brakes. If this energy that is wasted in traditional IC engines could be saved, the fuel economy would improve. One solution to this is a pneumatic hybrid using variable valve timing to compress air during deceleration and expand air during acceleration. The compressed air can also be utilized to supercharge the engine in order to get higher load in the first few cycles when accelerating. A Scania D12 single-cylinder diesel engine has been converted for pneumatic hybrid operation and tested in a laboratory setup. Pneumatic valve actuators have been used to make the pneumatic hybrid possible. The actuators have been mounted on top of the cylinder head of the engine. A pressure tank has been connected to one of the inlet ports and one of the inlet valves has been modified to work as a tank valve.
Technical Paper

A State-Space Simplified SCR Catalyst Model for Real Time Applications

2008-04-14
2008-01-0616
The use of Selective Catalytic Reduction (SCR) is becoming increasingly more popular as a way of reducing NOx emissions from heavy duty vehicles while maintaining competitive operating costs. In order to make efficient use of these systems, it's important to have a complete system approach when it comes to calibration of the engine and aftertreatment system. This paper presents a simplified model of a heavy duty SCR catalyst, primarily intended for use in combination with an engine-out emissions model to perform model based offline optimization of the complete system. The traditional way of modelling catalysts using a dense discretization of the catalyst channels and non-linear differential equation solvers to solve the heat and mass balance equations, requires too much computational power in this application. The presented model is also useful in other applications such as model based control.
Technical Paper

Evaluation of the Operating Range of Partially Premixed Combustion in a Multi Cylinder Heavy Duty Engine with Extensive EGR

2009-04-20
2009-01-1127
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels and injection timings sufficiently early or late to extend the ignition delay so that air and fuel mix extensively prior to combustion. This paper investigates the operating region of single injection diesel PPC in a multi cylinder heavy duty engine resembling a standard build production engine. Limits in emissions and fuel consumption are defined and the highest load that fulfills these requirements is determined. Experiments are carried out at different engine speeds and a comparison of open and closed loop combustion control are made as well as evaluation of an extended EGR-cooling system designed to reduce the EGR temperature. In this study the PPC operating range proved to be limited.
Technical Paper

A Physical Two-Zone NOx Model Intended for Embedded Implementation

2009-04-20
2009-01-1509
This paper offers a two-zone NOx model suitable for vehicle on-board, on-line implementation. Similar NOx modeling attempts have previously been undertaken. The hereby suggested method does however offer clear and important benefits over the previously methods, utilizing a significantly different method to handle temperature calculations within the (two) different zones avoiding iterative computation. The new method significantly improves calculation speed and, most important of all, reduces implementation complexity while still maintaining reasonable accuracy and the physical interpretation of earlier suggested methods. The equations commonly used to compute NOx emissions is also rewritten in order to suit a two-zone NOx model. An algorithm which can be used to compute NOx emissions is presented and the intended contribution of the paper is a NOx model, implementation feasible for an embedded system, e.g. embedded processor or embedded electronic hardware (FPGA).
Technical Paper

Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System

2009-04-20
2009-01-0896
In order to make efficient use of a Diesel engine equipped with an SCR system, it's important to have a complete system approach when it comes to calibration of the engine and the aftertreatment system. This paper presents a complete model of a heavy duty diesel engine equipped with a vanadia based SCR system. The diesel engine uses common rail fuel injection, a variable geometry turbocharger (VGT) and cooled EGR. The engine model consists of a quasi steady gas exchange model combined with a two-zone zero dimensional combustion model. The combustion model is a predictive heat release model. Using the calculated zone temperatures, the corresponding NOx concentration is given by the original Zeldovich mechanism. The SCR catalyst model is of the state space type. The basic model structure is a series of continuously stirred tank reactors and the catalyst walls are discretized to describe mass transport inside the porous structure.
X