Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

Suspension Systems: Some New Analytical Formulas for Describing the Dynamic Behavior

2018-04-03
2018-01-0554
The paper presents some new and unreferenced analytical formulae describing the dynamic behaviour of the suspension system of road or off-road vehicles. The quarter car model (2 degrees of freedom) is considered, the suspension can be either passive or active. Passive suspensions can be simplified as the spring-damper combination or the spring-damper combination with an additional in series spring (representing, e.g., the rubber bushing at the top of a McPherson strut or the rubber bushing at the end joints of the damper). The mathematical system is linear and the excitation is given by a random stationary and ergodic process. The standard deviations in analytical form are given referring to, respectively, the vehicle body acceleration, the relative displacement between sprung and unsprung mass, and the force at the ground. The so called invariant points of the frequency response functions are derived for both active and passive suspension.
Technical Paper

Lightweight Seat Design and Crash Simulations

2015-04-14
2015-01-1472
The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
X