Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Journal Article

A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine

2017-09-04
2017-24-0077
Pursuing a sustainable energy scenario for transportation requires the blending of renewable oxygenated fuels such as alcohols into commercial hydrocarbon fuels. From a chemical kinetic perspective, this requires the accurate description of both hydrocarbon reference fuels (n-heptane, iso-octane, toluene, etc.) and oxygenated fuels chemistry. A recent systematic investigation of linear C2-C5 alcohols ignition in a rapid compression machine at p = 10-30 bar and T = 650- 900 K has extended the scarcity of fundamental data at such conditions, allowing for a revision of the low temperature chemistry for alcohol fuels in the POLIMI mechanism. Heavier alcohols such as n-butanol and n-pentanol present ignition characteristic of interest for application in HCCI engines, due to the presence of the hydroxyl moiety reducing their low temperature reactivity compared to the parent linear alkanes (i.e. higher octane number).
Technical Paper

Lightweight Seat Design and Crash Simulations

2015-04-14
2015-01-1472
The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
Journal Article

Detailed Kinetic Analysis of HCCI Combustion Using a New Multi-Zone Model and CFD Simulations

2013-09-08
2013-24-0021
A new multi-zone model for the simulation of HCCI engine is here presented. The model includes laminar and turbulent diffusion and conduction exchange between the zones and the last improvements on the numerical aspects. Furthermore, a new strategy for the zone discretization is presented, which allows a better description of the near-wall zones. The aim of the work is to provide a fast and reliable model for carrying out chemical analysis with detailed kinetic schemes. A preliminary sensitivity analysis allows to verify that 10 zones are a convenient number for a good compromise between the computational effort and the description accuracy. The multi-zone predictions are then compared with the CFD ones to find the effective turbulence parameters, with the aim to describe the near-wall phenomena, both in a reactive and non-reactive cases.
Journal Article

Simulations of Advanced Combustion Modes Using Detailed Chemistry Combined with Tabulation and Mechanism Reduction Techniques

2012-04-16
2012-01-0145
Multi-dimensional models represent today consolidated tools to simulate the combustion process in HCCI and diesel engines. Various approaches are available for this purpose, it is however widely accepted that detailed chemistry represents a fundamental prerequisite to obtain satisfactory results when the engine runs with complex injection strategies or advanced combustion modes. Yet, integrating such mechanisms generally results in prohibitive computational cost. This paper presents a comprehensive methodology for fast and efficient simulations of combustion in internal combustion engines using detailed chemistry. For this purpose, techniques to tabulate the species reaction rates and to reduce the chemical mechanisms on the fly have been coupled.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Suspension Systems: Some New Analytical Formulas for Describing the Dynamic Behavior

2018-04-03
2018-01-0554
The paper presents some new and unreferenced analytical formulae describing the dynamic behaviour of the suspension system of road or off-road vehicles. The quarter car model (2 degrees of freedom) is considered, the suspension can be either passive or active. Passive suspensions can be simplified as the spring-damper combination or the spring-damper combination with an additional in series spring (representing, e.g., the rubber bushing at the top of a McPherson strut or the rubber bushing at the end joints of the damper). The mathematical system is linear and the excitation is given by a random stationary and ergodic process. The standard deviations in analytical form are given referring to, respectively, the vehicle body acceleration, the relative displacement between sprung and unsprung mass, and the force at the ground. The so called invariant points of the frequency response functions are derived for both active and passive suspension.
X