Refine Your Search

Topic

Author

Search Results

Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Journal Article

Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels

2009-06-15
2009-01-1971
A numerical investigation on a series of Diesel spray experiments in constant-volume vessels is proposed. Non reacting conditions were used to assess the spray models and to determine the grid size required to correctly predict the fuel-air mixture formation process. To this end, not only computed liquid and vapor penetrations were compared with experimental data, but also a detailed comparison between computed and experimental mixture fraction distributions was performed at different distances from the injector. Grid dependency was reduced by introducing an Adaptive Local Mesh Refinement technique (ALMR) with an arbitrary level of refinement. Once the capabilities of the current implemented spray models have been assessed, reacting conditions at different ambient densities and temperatures were considered. A Perfectly Stirred Reactor (PSR) combustion model, based on a direct integration of complex chemistry mechanisms over a homogenous cell, was adopted.
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Journal Article

Fluid Dynamic and Acoustic Optimization Methodology of a Motorbike Intake Airbox Using Multilevel Numerical CFD Models and Experimental Validation Tests

2013-09-08
2013-24-0070
In this work a multilevel CFD analysis have been applied for the design of an intake air-box with improved characteristics of noise reduction and fluid dynamic response. The approaches developed and applied for the optimization process range from the 1D to fully 3D CFD simulation, exploring hybrid approaches based on the integration of a 1D model with quasi-3D and 3D tools. In particular, the quasi-3D strategy is exploited to investigate several configurations, tailoring the best trade-off between noise abatement at frequencies below 1000 Hz and optimization of engine performances. Once the best configuration has been defined, the 1D-3D approach has been adopted to confirm the prediction carried out by means of the simplified approach, studying also the impact of the new configuration on the engine performances.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

Scale-Resolving Simulation of an ‘On-Road’ Overtaking Maneuver Involving Model Vehicles

2018-04-03
2018-01-0706
Aerodynamic properties of a BMW car model taking over a truck model are studied computationally by applying the scale-resolving PANS (Partially-averaged Navier-Stokes) approach. Both vehicles represent down-scaled (1:2.5), geometrically-similar models of realistic vehicle configurations for which on-road measurements have been performed by Schrefl (2008). The operating conditions of the modelled ‘on-road’ overtaking maneuver are determined by applying the dynamic similarity concept in terms of Reynolds number consistency. The simulated vehicle configuration constitutes of a non-moving truck model and a car model moving against the air flow, the velocity of which corresponds to the car velocity.
Technical Paper

Subjective-Objective Ride Comfort Assessment of Farm Tractors

2016-04-05
2016-01-1437
The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

2019-04-02
2019-01-0504
The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Challenges and Opportunities of Variant Calibration of Hybrid Vehicles

2013-03-25
2013-01-0128
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
Technical Paper

Coupling Node Reduction of a Synchronous Machine Using Multipoint-Constraints

2014-06-30
2014-01-2067
The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT.
Technical Paper

A New Electric Powertrain for Light Trucks: Indoor Testing and Advanced Simulation

2014-04-01
2014-01-1977
A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper

Multi-Physics Simulation Model for Noise and Vibration Effects in Hybrid Vehicle Powertrain

2014-06-30
2014-01-2093
Over the past 30 years, simulation of the N&V (Noise and Vibration) behaviour of automotive drivelines became an integral part of the powertrain development process. With current and future HEVs (Hybrid-Electrical Vehicles), additional phenomena and effects have entered the scene and need to be taken into account during layout/design as well as optimization phase. Beside effects directly associated with the e-components (namely electric whistle and whine), torque changes caused by activation/deactivation of the e-machine give rise to vibration issues (e.g. driveline shuffle or clonk) as well. This is in particular true for transient operation conditions like boosting and recuperation. Moreover, aspects of starting the Internal Combustion Engine (ICE) using the built-in e-machine in conjunction with the dynamic behaviour of torsional decoupling devices become increasingly important. In order to cope with above-mentioned effects a multi-physics simulation approach is required.
Technical Paper

Design Restraints in Space Laboratories

2003-07-07
2003-01-2435
1Restraints constitute the unique and necessary aids for living and working in microgravity conditions in which crewmembers need facilities as support to move around and as restraints while they work. In environments with microgravity, disturbance to the vestibular sense, when it occurs together with conflicting visual and perceptive stimuli, can cause disorientation, vertigo and illusions regarding posture and movement. Therefore, the design of restraints is a critical ingredient of success for crewmembers performance in space during both IVA and EVA activities. Standard restraints and mobility aids are provided on ISS such that all installation, operation, and maintenance can be performed: Foot Restraint, Adjustable Length Tether, Handrails, Adjustable Length Tether and Torso Restraint Assembly. Crewmembers use Standard Foot Restraints and Handrails to improve the movement capacities and the postural stability.
Journal Article

Bifurcation Analysis of a Car Model Running on an Even Surface - A Fundamental Study for Addressing Automomous Vehicle Dynamics

2017-03-28
2017-01-1589
The paper deals with the bifurcation analysis of a simple mathematical model describing an automobile running on an even surface. Bifurcation analysis is adopted as the proper procedure for an in-depth understanding of the stability of steady-state motion of cars (either cornering or running straight ahead). The aim of the paper is providing the fundamental information for inspiring further studies on vehicle dynamics with or without a human driver. The considered mechanical model of the car has two degrees of freedom, nonlinear tire characteristics are included. A simple driver model is introduced. Experimental validations of the model are produced. As a first step, bifurcation analysis is performed without driver (fixed control). Ten different combinations of front and rear tire characteristics (featuring understeer or oversteer automobiles) are considered. Steering angle and speed are varied. Many different dynamical behaviors of the model are found.
Technical Paper

LTV MPC Vehicle Model for Autonomous Driving in Limit Conditions

2015-04-14
2015-01-0315
The Linear Time Varying (LTV) Model Predictive Control (MPC) is a linear model predictive control based on linearization of the nonlinear vehicle model. The linearization is carried out consideing each vehicle state. The developed model is able to steer to avoid obstacles and follow a given path. Once the optimal parameters are found, both in terms of trajectory following and real-time performances, the LTV-MPC is used for assessing the limit vehicle conditions as a function of the vehicle forward target speed, the obstacle shape as well as the road conditions (both dry and wet road conditions were taken into account). It is shown that, to avoid collisions, given performances of the vehicle brakes and of the mounted sensors are required.
X