Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Sound Optimization for Downsized Engines

2014-06-30
2014-01-2040
Today, the number of downsized engines with two or three cylinders is increasing due to an increase in fuel efficiency. However, downsized engines exhibit unbalanced interior sound in the range of their optimal engine speed, largely because of their dominant engine orders. In particular, the sound of two-cylinder engines yields half the perceived engine speed of an equivalent four-cylinder engine at the same engine speed. As a result when driving, the two-cylinder engine would be shifted to higher gears much later, diminishing the expected fuel savings. This contribution presents an active in-car sound generation system that makes a two-cylinder engine sound like the more familiar four-cylinder engine. This is done by active, load-dependent playback of signals extracted from the engine vibration through a shaker mounted on the firewall. A blind test with audio experts indicates a significant reduction of the engine speed when shifting to a higher gear.
Technical Paper

PMSM Noise - Simulation Measurement Comparison

2018-06-13
2018-01-1552
Growing development of hybrid and fully electrical drives increases demand for accurate prediction of noise and vibration characteristic of electric and electronic components. This paper describes the numerical and experimental investigation of noise emission from PMSM electric machine as a one of the most important noise sources in electric vehicles. Structural and air borne noise is measured on e-machine test rig and used for calibration and validation of the numerical model. The electro-magnetic field in PMSM is simulated using finite volume method. Electro-magnetic forces are applied as excitation to the 3D FE model of e-machine, mounded on test frame. Material properties are tuned using results from experimental modal analysis including identification of orthotropic characteristic of stator laminated core, assembled together with coil and end winding. Structural vibrations are calculated by modal frequency response analysis and applied as excitation in air borne noise simulation.
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Technical Paper

Performance Attributes for Root Cause Detection of Piston Induced Noise

2016-06-15
2016-01-1775
Modern powertrain noise investigation in the development process and during trouble shooting is a combination of experiment and simulation. In simulation in recent years main focus was set on model completeness, consideration of all excitation mechanisms and efficient and stabile numerical algorithms. By that the total response of the virtual powertrain is already comparable to the overall noise level of the real powertrain. Actual challenge is to trace back the overall response to its main excitation and noise generating mechanism as well as to their main driving parameters to support the engineer not only in reaching absolute values, but also to derive the root cause of a response or potential problem and to get hints on how to improve the specific behavior. Approaches by parameter sensitivity studies are time consuming and not unambiguous.
Journal Article

Turbocharger Noise Quality Parameters for Efficient TC Noise Assessment and Refinement

2016-06-15
2016-01-1817
Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
Technical Paper

Hybrid Vehicle’s NVH Challenges and Influences on the NVH Development

2016-06-15
2016-01-1837
Due to more stringent emission regulation, especially plug-in hybrid vehicles have an increased attractiveness for OEMs to reduce OEM’s CO2 fleet emission. Generally, hybrid vehicles have a much higher complexity than conventional vehicles. This gives an additional degree of freedom for the development but also increases the number of potential NVH topics dramatically. Therefore, the role of frontloading and early prototype testing is getting even higher importance than in standard developments. Current hybrid vehicles on the market are mainly ICE vehicles with electric boosting or starting functionality only. This however will not be sufficient to fulfill the OEM’s CO2 fleet emission requirements. Future hybrid vehicles will have much higher electrical capabilities and drive much more in pure electric modes. Therefore, the more frequent change between the different driving modes and the related mode transitions will lead to a more complex interior NVH situation.
Technical Paper

Analytical Techniques for Engine Structure Using Prediction of Radiated Noise of Diesel Engine with Changing Combustion Excitation

2017-06-05
2017-01-1802
In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
X