Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Multi-Component Modeling of Diesel Fuel for Injection and Combustion Simulation

2013-09-08
2013-24-0007
Accurate simulation tools are needed for rapid and cost effective engine development in order to meet ever tighter pollutant regulations for future internal combustion engines. The formation of pollutants such as soot and NOx in Diesel engines is strongly influenced by local concentration of the reactants and local temperature in the combustion chamber. Therefore it is of great importance to model accurately the physics of the injection process, combustion and emission formation. It is common practice to approximate Diesel fuel as a single compound fuel for the simulation of the injection and combustion process. This is in many cases sufficient to predict the evolution of the in-cylinder pressure and heat release in the combustion chamber. The prediction of soot and NOx formation depends however on locally component resolved quantities related to the fuel liquid and gas phase as well as local temperature.
Technical Paper

Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations

2013-09-08
2013-24-0014
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Journal Article

Theoretical and Experimental Ride Comfort Assessment of a Subject Seated into a Car

2010-04-12
2010-01-0777
A comprehensive research is presented aiming at assessing the ride comfort of subjects seated into road or off-road vehicles. Although many papers and books have appeared in the literature, many issues on ride comfort are still to be understood, in particular, the paper investigates the mutual effects of the posture and the vibration caused mostly from road unevenness. The paper is divided into two parts. In the first part, a mathematical model of a seated subject is validated by means of actual measurements on human subjects riding on a car. Such measurements refer to the accelerations acting at the subject/seat interface (vertical acceleration at the seat cushion and horizontal acceleration at the seat back). A proper dummy is used to derive the seat stiffness and damping.
Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Technical Paper

Development of Fully-Automatic Parallel Algorithms for Mesh Handling in the OpenFOAM®-2.2.x Technology

2013-09-08
2013-24-0027
The current development to set up an automatic procedure for automatic mesh generation and automatic mesh motion for internal combustion engine simulation in OpenFOAM®-2.2.x is here described. In order to automatically generate high-quality meshes of cylinder geometries, some technical issues need to be addressed: 1) automatic mesh generation should be able to control anisotropy and directionality of the grid; 2) during piston and valve motion, cells and faces must be introduced and removed without varying the overall area and volume of the cells, to avoid conservation errors. In particular, interpolation between discrete fields is frequent in computational physics: the use of adaptive and non-conformal meshes necessitates the interpolation of fields between different mesh regions. Interpolation problems also arise in areas such as model coupling, model initialization and visualisation.
Technical Paper

Hybrid URANS/LES Turbulence Modeling for Spray Simulation: A Computational Study

2019-04-02
2019-01-0270
Turbulence modeling for fuel spray simulation plays a prominent role in the understanding of the flow behavior in Internal Combustion Engines (ICEs). Currently, a lot of research work is actively spent on Large Eddy Simulation (LES) turbulence modeling as a replacement option of standard Reynolds averaged approaches in the Eulerian-Lagrangian spray modeling framework, due to its capability to accurately describe flow-induced spray variability and to the lower dependence of the results on the specific turbulence model and/or modeling coefficients. The introduction of LES poses, however, additional questions related to the implementation/adaptation of spray-related turbulence sources and to the rise of conflicting numerics and grid requirements between the Lagrangian and Eulerian parts of the simulated flow.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

2019-04-02
2019-01-0504
The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
Technical Paper

Integrated Vehicle and Driveline Modeling

2007-04-16
2007-01-1583
In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, and actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances.
Technical Paper

Development and Application of S.I. Combustion Models for Emissions Prediction

2006-04-03
2006-01-1108
The s.i. combustion process and its corresponding pollutant formation are investigated by means of a quasiD approach and a CFD model. This work has been motivated by the need to better understand the reliability of such models and to assess their accuracies with respect to the prediction of engine performances and emissions. An extended dissertation about the fundamental mechanisms governing the pollutant formation in the turbulent premixed combustion which characterizes the s.i. engines is given. The conclusion of such analysis is the definition of a new reduced chemical scheme, based on the application of partial-equilibrium and steady-state assumptions for the radicals and the solution of a transport equation for each specie which is kinetically controlled. For this purpose the CFD code OpenFOAM [1, 2, 3] and the thermo-fluid dynamic code GASDYN [4, 5] have been applied and enhanced.
Technical Paper

Prediction of the Attenuation Characteristics of I.C. Engine Silencers by 1-D and Multi-D Simulation Models

2006-04-03
2006-01-1541
This paper describes the development, application and comparison of two different non-linear numerical codes, respectively based on a 1D and 3D schematization of the geometrical domain, for the prediction of the acoustic behavior of common silencing devices for i.c. engine pulse noise abatement. A white noise approach has been adopted and applied to predict the attenuation curves of silencers in the frequency domain, while a non-reflecting boundary condition was used to represent an anechoic termination. Expansion chambers, Helmholtz and column resonators, Herschel-Quincke tubes have been simulated by both the 1D and the 3D codes and the results compared to the available linear acoustic analytical solutions. Finally, a hybrid approach, in which the CFD code has been integrated with the 1D model, is described and applied to the simulation of a single cylinder engine. The computed results are compared to the measured pressure waves and emitted sound pressure level spectra.
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
Technical Paper

A New Mathematical-Physical 2D Tire Model for Handling Optimization on a Vehicle

1999-03-01
1999-01-0789
This paper introduces and discusses a new 2D physical model which has been developed and validated in order to study and optimize the handling behavior of the tire. It can be divided into two parts, the structural model and the contact area model. The parameters, that are function of the vertical load, are identified or calculated by comparison with the results provided by 3D finite element models. The input data for the identification procedure consist of a set of frequency responses performed on the finite element model. A second set of simulations on the 3D model of the tread pattern gives the characteristics of the contact model. Once built the 2D model it is easy to carry out both steady state and transient analysis. The steady state analysis returns the cornering carpet, in terms of lateral force and self-aligning moment as function of the cornering angle. The transient analysis allows the evaluation of the relaxation length and dynamic characteristics.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Technical Paper

A Low Cost System for Active Gear Shift and Clutch Control

2015-04-14
2015-01-0228
The objective of this study is to demonstrate the design and construction of an innovative active gear-shift and clutch for racecars, applied to a Formula Student car, based on the use of DC gear-motors. Racecars require extremely quick gear-shifts and every system to be as light as possible. The proposed solution is designed to reduce energy consumption, weight and improve gear-shift precision compared to traditionally employed electro-hydraulic solutions, although maintaining state of the art performances.
Technical Paper

Lightweight Seat Design and Crash Simulations

2015-04-14
2015-01-1472
The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
X