Refine Your Search

Topic

Author

Search Results

Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

Design Improvement and Failure Simulation of Thermostat Vent Using Fatigue Test Method

2021-09-22
2021-26-0456
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. Even if there is a slight reduction in product cost and time has a high significant impact on business. Engineers are under tremendous pressure to develop competitive and give better product concern resolution at the earliest. To arrest the failure of this thermostat vent, an innovative approach was used to relocate de-aeration restrictor on the hose to the thermostat root. Thus, resolving the product concern by increasing the strength of the vent at root and providing good business impact on cost savings. Physical testing has provided an effective way to smoothen product development for concern resolution. This Paper highlights approach on an attempt to field failure simulation with existing and modified design with lab test results.
Technical Paper

A Holistic Approach to Develop a Modern High-Power Density Diesel Engine to Meet Best-in-Class NVH Levels

2020-04-14
2020-01-0406
The ever-increasing customer expectations put a lot of pressure on car manufacturers to constantly reduce the noise, vibration, and harshness (NVH) levels. This paper presents the holistic approach used to achieve best-in-class NVH levels in a modern high-power density 1.5 lit 4-cylinder diesel engine. In order to define the NVH targets for the engine, global benchmark engines were analysed with similar cubic capacity, power density, number of cylinders and charging system. Moreover, a benchmark diesel engine (considered as best-in-class in NVH) was measured in a semi-anechoic chamber to define the engine-level NVH targets of the new engine. The architecture selection and design of all the critical components were done giving due consideration to NVH behaviour while keeping a check on the weight and cost.
Technical Paper

Innovative Method of Child Injury Performance Optimization using Sled Tests

2021-09-22
2021-26-0008
Child injury performance evaluation is becoming critical part of almost all legal and consumer ratings-based vehicle safety evaluation protocols. Most of New CAR Assessment Programs (NCAP) now have separate ratings exclusively to evaluate child restraint system effectiveness and child dummy performance under various crash testing modes. OEM’s have need and challenge to maximize injury performance. Sled tests are conventionally used for tuning restraints like seat belts and airbags for driver and co-driver under various frontal type test conditions. However, second row seats are used for CRS/ Child injury performance evaluations. In the present study an attempt is made to simulate child injury performance of P3 dummy positioned on second row seat on defined child seat for 64 kmph frontal Offset deformable barrier type test conforming to Global NCAP. Sled pulses are carefully tuned to capture key injury patterns. Thence restraint parameters are tuned to improve child dummy injuries
Technical Paper

Dynamic Correlation and Optimization of an SUV Rear Bumper Structure

2010-04-12
2010-01-0501
Structural durability of different components and systems for a Utility Vehicle is critical to design, due to severe customer usage in rural zones and off road driving conditions. Physical validation of new component designs is time consuming, costly and iterative. Also, this process does not ensure an optimized structure. Through virtual validation it is possible in the initial phase of design to validate the structure and optimize the design. The core of a virtual validation process is to obtain accurate correlation which can replace developmental laboratory testing. Hence, only a confirmatory test can be carried out. This enables design optimization based on simulations. This paper presents the systematic approach used for optimization of SUV rear bumper and bumper mounting structure. Dynamic correlation is obtained for bumper structure subjected to the vibration levels as mapped from the proving ground test. The objective of new bumper development is for value engineering.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Design Strategies for Meeting ECE R14 Safety Test for Light Commercial Vehicle

2010-10-05
2010-01-2017
The ECE R-14, AIS015 safety standard specifies the requirements of the safety belt anchorages namely, minimum numbers, their locations, static strength to reduce the possibility of their failure during accidental crashes for effective occupant restraint and the test procedures. This standard applies to the anchorages of safety belts for adult occupants of forward facing or rearward facing seats in vehicles of categories M and N. ECE R14 ensures the passenger safety during sudden acceleration/retardation and accidents. Early simulations revealed some structural short falls that demanded cabin improvements in order to fulfill regulation requirements for the seal belt anchorage test. This paper describes the innovative design modifications done to meet the seat belt anchorage test. Good correlation with the test is achieved in terms of deformations. These simulation methods helped in reducing the number of intermediate physical tests during the design process.
Technical Paper

Driveline Boom Noise Reduction through Simplified FEM Approach

2017-01-10
2017-26-0215
In today's competitive automobile marketplace with reduced vehicle development time and fewer prototypes/tests, CAE is playing very crucial role in vehicle development. Automobile environment demands ever improving levels of vehicle refinement. Performance and refinement are the key factors which can influence the market acceptance of vehicle. Driveline is one of the key systems whose refinement plays critical role in improved customer satisfaction. Because of the virtue of the driveline functionality, driveline induced noise and vibration are the most common issues in the AWD vehicle development programs. Refinement of the drive line needs complicated nonlinear full vehicle CAE MBD models for the evaluation of driveline induced noise and vibration responses at different operating conditions [1]. In this paper a simplified approach is adapted for solving the Noise & Vibration issue which has been identified at the prototype testing level of an AWD vehicle development.
Technical Paper

Objective Drivability Evaluation on Compact SUV and Comparison with Subjective Drivability

2017-01-10
2017-26-0153
Over the ages of automotive history, expectations of the customers increases vastly starting from driving comfort, better fuel economy and a safe vehicle. Requirement of good vehicle drivability from customers are increasing without any compromise of fuel economy and vehicle features. To enhance the product, it is a must for every OEM’s to have better drivability to fulfill the needs of the customer. This paper explains Objective Drivability Evaluation done on compact SUV vehicle and comparison with subjective drivability. Vehicle manufacturer usually evaluate drivability based on the subjective assessments of experienced test drivers with a sequence of certain maneuvers. In this study, we have used the objective drivability assessment tool AVL drive to obtain the vehicle drivability rating. The vehicle inputs from the accelerometer sensor which captures the longitudinal acceleration and CAN bus signals such as engine speed, vehicle speed, accelerator pedal, are fed into the software.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Vibro-Acoustic Optimization of 4 Cylinder Diesel Engine Oil Pan Structure for Lower Sound Radiation.

2016-06-15
2016-01-1771
By reducing overall noise emanating from Engine at design phase, permits to reduce both time-to-market and the cost for developing new engines. In order to reduce vibration and radiated noise in engine assembly, oil pan is one of the most critical components. This study explains the key-steps that are executed to optimize the oil pan design for 4-cylinder diesel engine by improving Normal Modes, modified Topology, reduced Forced Frequency Response and ATV analysis for reducing its noise radiation. Using Multi-body tool crankshaft forces were generated and the FE model of Base Design was analysed for its noise radiation and panel contribution was done for finding the most radiating panels using Boundary Element Method approach. A series of iterative optimization were carried out with commercial software. Parameters like Stiffness, material property, Ribbing patterns and Shape of the Oil pan was modified to shift the natural frequencies of the component and reduce the sound radiation.
Technical Paper

Quantitative Evaluation of Steering System Rattle Noise

2017-07-10
2017-28-1952
Today’s automotive industry in the process of better fuel efficiency and aiming less carbon foot print is trying to incorporate energy saving and hybrid technologies in their products. One of the trends which has been followed by Original Equipment Manufacturers (OEMs) is the usage of Electric Power Steering (EPS) system. This has been an effective option to target fuel saving as compared to hydraulically assisted power steering system. EPS has been already tested successfully, not only on system level but also on vehicle level for endurance and performance by OEMs as per their norms and standards. Over the decade, NVH (noise, vibration & harshness) have become one of the touch points for customer perception about vehicle quality. This leads us to a commonly perceived problem in EPS or manual type steering system i.e. rattle noise.
Technical Paper

Reduction of Driveline Boom Noise and Vibration of 40 Seat Bus through Structural Optimization

2017-07-10
2017-28-1926
In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Setting of Inspection Parameters for Automotive Transmission Parts in Various Bench Tests

2013-09-24
2013-01-2448
This paper deals with setting of Inspection parameters for selected automotive transmission parts in various bench tests. This paper we are discuss about critical dimension's measured for particular type of test. It is not possible to measure all the dimensions of a component for doing a particular test. This is due to time constraints set by program delivery deadlines. From above statement it can be deduced that it is almost impossible to measure all dimensions of a component. A bench level test may consist of two major tests. They are maximum load test and gear shift durability test. The maximum load test deals with gear box durability test and torque carrying capacity of gearbox. Parameters to be measured for some of above parts will be identified. More importantly it will also identify see reasons for that parameter to be measured.
Technical Paper

Optimization through NVH Analysis to Improve the Vehicle Acoustics and Quality of Transmission Shifter

2013-09-24
2013-01-2445
Gear shift quality and feel determines the performance of the transmission. It is dependent on the synchronizer, shift system, gear shifter etc in a transmission. In this study the impact of the transmission shifter on the gear shift feel is detailed. More focus is paid towards the feel in terms of NVH characteristics. The rear wheel drive transmission shifter can be bifurcated into direct and indirect shift type. Indirect shifter are of two types, the rod type shifter and the cable shifter. The rod type shifter is analyzed in detail. All the shifters are connected to the gear shift top lever which is the customer interface for gear shifting. The design of the top lever is critical in getting the optimal feel of shifting and the mounting of the shifter is critical to improve its NVH characteristics. Different design iteration of the top lever are studied to illustrate the impact of the weight and stiffness on the vibration.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
X