Refine Your Search

Topic

Author

Search Results

Technical Paper

Design Strategies for Meeting ECE R14 Safety Test for Light Commercial Vehicle

2010-10-05
2010-01-2017
The ECE R-14, AIS015 safety standard specifies the requirements of the safety belt anchorages namely, minimum numbers, their locations, static strength to reduce the possibility of their failure during accidental crashes for effective occupant restraint and the test procedures. This standard applies to the anchorages of safety belts for adult occupants of forward facing or rearward facing seats in vehicles of categories M and N. ECE R14 ensures the passenger safety during sudden acceleration/retardation and accidents. Early simulations revealed some structural short falls that demanded cabin improvements in order to fulfill regulation requirements for the seal belt anchorage test. This paper describes the innovative design modifications done to meet the seat belt anchorage test. Good correlation with the test is achieved in terms of deformations. These simulation methods helped in reducing the number of intermediate physical tests during the design process.
Technical Paper

Functional Safety - Progressing Towards Safer Mobility

2013-11-27
2013-01-2841
Increasing complexity in E/E architecture poses several challenges in developing comfortable, clean and safe cars. This mandates robust processes to mitigate potential hazards due to malfunction of electronic systems throughout the product life cycle. With the advent of ISO 26262 [1] which provides guidelines for developing safe cars, the process is getting standardized towards safer mobility. In this paper, the functional safety process is briefly covered and a case study of Hazard Analysis and Risk Assessment for specific E/E system is presented. An in-house tool developed for functional safety process and management is covered.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Gear Shift Fork Stiffness Optimisation

2011-09-13
2011-01-2235
This paper presents a simulation of the stiffness of the shift fork of a manual transmission using contact pattern analysis and optistrut. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the simulation, co-relation and validation of the optimization of the gear shift fork stiffness. The shift system was modeled in the software to collate the synchronization force, shift system gap etc with the constraint on the shift fork. It is constrained by the synchronizer sleeve and the fork mounting on the gear shift rail. The synchronizer force is then applied on the gear shift fork pads which are translated to the synchronizer sleeve. It has a number of pads which come into contact at different occasion of the synchronization because of the varying stiffness of the fork.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Monocoque Vehicle Body-In-White Life Evaluation Using Torsion Endurance Test on Rig

2016-04-05
2016-01-0276
In an automotive product development environment, identifying the premature structural failures is one of the important tasks for Body-In-White (BIW), sub-assemblies and components. The integrated car body structure i.e. monocoque structure, is widely used in passenger cars and SUVs. This structure is subjected to bending and torsional vibrations, due to dynamic loads. Normally the stresses due to bending are relatively small compared to stresses due to torsion in Body-In-White under actual road conditions [1]. This paper focuses on evaluating the life of Body-In-White structures subjected to torsional loading. An accelerated test method was evolved for identifying failure modes of monocoque BIW by applying torsion fatigue. The observation of the crack generation and propagation was made with respect to a number of torsion fatigue cycles.
Technical Paper

Silent Block Bush Design and Optimization for Pick-Up Truck Leaf Spring

2017-03-28
2017-01-0455
Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Journal Article

Frontloading Approach for Sound Package Design for Noise Reduction and Weight Optimization Using Statistical Energy Analysis

2017-01-10
2017-26-0222
First time right vehicle performance and time to market, remains all automotive OEMs top priority, to remain competitive. NVH performance of product communicates impression to customer, remains one of the most important and complex attribute to meet, considering performances to be met for 20 Hz -6000 Hz. Frontloading techniques (FEM/BEM/SEA/MBD) for NVH are critical and necessary to achieve first time right NVH performance. Objective of this paper is to present a frontloading approach for automotive sound package optimization (absorber, barrier and damper elements) for SUV vehicle. Current process of designing sound package is mainly based on experience, competitive benchmarking of predecessor products. This process (current process) heavily depend on testing and validation at physical prototype and happens at later stages of program, especially on tooled up body.
Technical Paper

Vehicle Sway Prediction in Hydraulic Circuit Failed Condition on 4 Wheeled Vehicle with ‘X’ Split Brake Configuration

2017-01-10
2017-26-0344
A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Prediction of Mirror Induced Wind Noise Using CFD-FEM Approach

2017-01-10
2017-26-0221
Wind noise is becoming important for automotive development due to significant reductions in road and engine noise. This aerodynamic noise is dominant at highway speeds and contributes towards higher frequency noise (>250Hz). In automotive industry accurate prediction and control of noise sources results in improved customer satisfaction. The aerodynamic noise prediction and vehicle component design optimization is generally executed through very expensive wind tunnel testing. Even with the recent advances in the computational power, predicting the flow induced noise sources is still a challenging and computationally expensive problem. A typical case of fluid-solid interaction at higher speeds results into broadband noise and it is inherently an unsteady phenomenon. To capture such a broad range of frequency, Detached Eddy Simulation (DES) has been proven to be the most practical and fairly accurate technique as sighted in literature.
Technical Paper

CFD Driven Compact and Cost Effective Design of Canopy

2017-01-10
2017-26-0254
Canopy design is governed by CPCB regulations. The regulations explicitly tells about noise levels. It’s very important to have the proper ventilation of canopy to ensure the proper working at all climatic conditions. Mostly it is installed at commercial locations & hence the ownership cost matters. Reducing the footprint without affecting the power output is challenging. It implies the need of the CFD simulation to predict the cooling performance of the canopy. The baseline canopy is tested to estimate the performance parameters. It is modelled in CFD with all the minute details. All the parts including engine, alternator, fan, fuel tank are modelled. MRF(Moving Reference Frame) model used to simulate fan performance. The cooling systems like radiator & oil cooler is modelled as porous region. The total flow across canopy & the air velocity across critical regions is used to define the performance.
Technical Paper

Tractor Transmission Validation for Synchronizer as Skid at Rig Level

2017-01-10
2017-26-0231
Synchronizer design optimization is being prime need for smooth gear shifting and shifting noise. Especially in tractors, synchronizers are subjected to different kinds of loads under various field applications such as Puddling, Cultivation, Haulage, Construction equipment, etc. Also, transmission housings act as a part of chassis of the tractor and hence subjected to sever bending loads. Thus, design & evaluation of tractor transmission, meeting the customer requirement is quite complex. Current trends in product development are driven by shortening development time, reduced cost and first-time-right principle. These above requirements drive tractor manufacturers to put more efforts on delivering quality, robust and reliable transmission assembly in time. Generally the synchronizer packs were validated at sub system level in test rig and further assembled on to the tractor to validate the same in tractor level it requires more time & high cost.
Technical Paper

Vibro-Acoustic Optimization of 4 Cylinder Diesel Engine Oil Pan Structure for Lower Sound Radiation.

2016-06-15
2016-01-1771
By reducing overall noise emanating from Engine at design phase, permits to reduce both time-to-market and the cost for developing new engines. In order to reduce vibration and radiated noise in engine assembly, oil pan is one of the most critical components. This study explains the key-steps that are executed to optimize the oil pan design for 4-cylinder diesel engine by improving Normal Modes, modified Topology, reduced Forced Frequency Response and ATV analysis for reducing its noise radiation. Using Multi-body tool crankshaft forces were generated and the FE model of Base Design was analysed for its noise radiation and panel contribution was done for finding the most radiating panels using Boundary Element Method approach. A series of iterative optimization were carried out with commercial software. Parameters like Stiffness, material property, Ribbing patterns and Shape of the Oil pan was modified to shift the natural frequencies of the component and reduce the sound radiation.
Technical Paper

FE Driven Pedestrian Friendly Front End Design and Its Correlation with Physical Test

2015-01-14
2015-26-0212
In the current competitive automobile market, with growing knowledge and concern for occupant and vulnerable road user safety, design & engineering of passenger cars in stipulated time is a challenge. As front styling is a crucial factor, early involvement of Computer Aided Engineering (CAE) through front loading helps reduce the product development time considerably with a pedestrian friendly engineered design. The present paper explains how initial inputs are given to styling & engineering teams during early stages of product development where availability of Computer Aided Design (CAD) data is minimal. Critical load paths were identified and shape of the front end was modified accordingly. Various locations of hinge mechanism were evaluated to reduce the severity of injury in the head impact zone. Sufficient gaps between the exterior surfaces and interior hard points were worked upon to reduce the impact values.
Journal Article

Comparing Various Multi-Disciplinary Optimization Approaches for Performance Enhancement and Weight Reduction of a Vehicle Chassis Frame

2016-04-05
2016-01-0305
Designing a vehicle chassis involves meeting numerous performance requirements related to various domains such as Durability, Crashworthiness and Noise-Vibration-Harshness (NVH) as well as reducing the overall weight of chassis. In conventional Computer Aided Engineering (CAE) process, experts from each domain work independently to improve the design based on their own domain knowledge which may result in sub-optimal or even non-acceptable designs for other domains. In addition, this may lead to increase in weight of chassis and also result in stretching the overall product development time and cost. Use of Multi-Disciplinary Optimization (MDO) approach to tackle these kind of problems is well documented in industry. However, how to effectively formulate an MDO study and how different MDO formulations affect results has not been touched upon in depth.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
X