Refine Your Search

Topic

Search Results

Technical Paper

Agricultural Tractor Hydraulic Lift Arm Assembly Design for Durability and Correlation with Physical Test

2016-02-01
2016-28-0237
A hydraulic power train assembly of an agricultural tractor is meant to lift the heavy implements during field operations and transportation. As it is a crucial member of the tractor for its usage, so the power train assembly needs a properly designed lift arm, rocker arm assembly with better strength and stiffness. There are a standard like IS12224, IS4468 which regulates the test method for hydraulic power and lift capacity of tractor and the layout of hydraulic three point linkage. Computer aided engineering techniques followed by laboratory testing have been deployed in the earlier stages of the product design & development itself to deliver the first time right products to the customer. In this paper, a virtual simulation process has been established to design an agricultural tractor hydraulic lift arm to meet the above requirements. A Design Verification Plan (DVP) has been developed consisting of 3 load cases.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

2019-04-02
2019-01-0513
Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Sensitivity Analysis of Hydraulic Brake Load Sensing Valve

2017-01-10
2017-26-0362
Hydraulic Load sensing brake valves are used in vehicles from a long time in the market. They proportionate the rear brake line pressure according to the rear axle load in order to avoid the rear wheel lock during braking. During the actual test of the Hydraulic load sensing valve on a subject vehicle, there was drop in performance against its expected peak brake performance. In the current work a detailed analysis is made to understand the sensitivity of the load sensing valve & its effect on the vehicle performance. The parameters affecting the valve sensitivity along with vehicle level factors affecting the performance are analysed during the work.
Technical Paper

Vehicle Sway Prediction in Hydraulic Circuit Failed Condition on 4 Wheeled Vehicle with ‘X’ Split Brake Configuration

2017-01-10
2017-26-0344
A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
Technical Paper

Comparative Analysis of Strain based Fatigue Life Obtained from Uni-Axial and Multi-Axial Loading of an Automotive Twist Beam

2017-01-10
2017-26-0312
Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
Technical Paper

Powertrain Mounted Exhaust System Failure Correlation and Methodology Development in CAE

2017-01-10
2017-26-0267
Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor. Muffler, which has higher inertia, is mounted at higher offset with respect to engine rolling axis.
Technical Paper

Durability Analysis Methodology of Tractor Hydraulic Bell Crank Assembly for Various Agricultural Operations

2017-01-10
2017-26-0235
A tractor is vehicle specifically designed to deliver a high tractive effort at slow speeds for carrying out various agriculture operations like ploughing, rotavation etc. using implement. Hydraulic system is a key feature which connects these implements with the tractor. It controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induces extreme range of load on the hydraulic system, thus making it challenging to design these components. Bell crank assembly is one of the main components of hydraulic system which controls the draft (thus, the loads experienced by tractor) through load sensing mechanism. Often bell crank assembly failures are reported from field due to uneven soil hardness and presence of rocks. This paper studies one of such bell crank assembly failures in the field. The failure was reported after half life cycle of usage during agriculture Operation.
Technical Paper

Tractor Transmission Validation for Synchronizer as Skid at Rig Level

2017-01-10
2017-26-0231
Synchronizer design optimization is being prime need for smooth gear shifting and shifting noise. Especially in tractors, synchronizers are subjected to different kinds of loads under various field applications such as Puddling, Cultivation, Haulage, Construction equipment, etc. Also, transmission housings act as a part of chassis of the tractor and hence subjected to sever bending loads. Thus, design & evaluation of tractor transmission, meeting the customer requirement is quite complex. Current trends in product development are driven by shortening development time, reduced cost and first-time-right principle. These above requirements drive tractor manufacturers to put more efforts on delivering quality, robust and reliable transmission assembly in time. Generally the synchronizer packs were validated at sub system level in test rig and further assembled on to the tractor to validate the same in tractor level it requires more time & high cost.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

Polypropylene Copolymer Automotive Canopy Plastic Structure Application

2018-04-03
2018-01-0157
This paper describes modified polypropylene copolymer (PPCP) material for canopy plastic structure in a modular commercial passenger vehicle. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. Material described in this paper is a PPCP compound reinforced with glass fiber and mica filler. The application described in this paper is a canopy plastic structure, which is a structural exterior plastic part. Canopy plastic structure acts as a structural frame to hold vinyl canopy in both sides and tail gate of vehicle. In this paper, PPCP has been explored for canopy plastic structure part against conventional polyamides. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

Polypropylene Copolymer Material for Automotive Thin Wall Front Bumper with Integrated Grill Application

2018-04-03
2018-01-0153
This paper describes modified polypropylene copolymer (PPCP) material for thin wall front bumper development (2.5 mm) with integrated grill in automotive application. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. This is a ready to mold material used in injection molding process. Front bumper and grill are functional components with slow speed impact requirement to absorb impact in real world. These parts have precise fitment requirement under sun load condition. Front bumper is also having other critical criteria with respect to vehicle variants such as aesthetic mold-in-color finish as well as painted finish. Grill has air entry performance criteria to ensure cooling efficiency in intercooler compartment.
Technical Paper

Design for Adaptive Rear Floor Carpet for Changing Shapes and Complex Architecture

2019-10-11
2019-28-0004
With increasing road traffic and pollution, it becomes responsibility for all OEM to increase fuel efficiency and reduce carbon footprint. Most effective way to do so is to reduce weight of the vehicle and more use of ecofriendly recyclable material. With this objective we have come up with Light weight, cost effective sustainable design solution for Injection moulded RQT (Rear quarter trim). It is an interior plastic component mounted in the III row of the vehicle. This is required to ensure inside enhanced aesthetic look of the vehicle and comfort for 3rd row passengers. Conventionally RQT of vehicle with 3rd row seating is made using plastic material (PP TD 20). With the use of plastic moulded RQT there is a significant weight addition of around 6 kg per vehicle along with reduced cabin space, huge investment and development time impact.
Technical Paper

Design of Energy Absorbing Plastic Brackets to Meet Rear Crash Regulation ECE R42

2019-10-11
2019-28-0041
Vehicle safety and adherence to rules and regulation is of utmost requirement for any OEM. ECE R42 is one of the most important test criteria for a vehicle to get launched. To prove this, we shall discuss the case of Low speed impact structure construction. In this paper, we are going to demonstrate the novel design of Polymer energy absorption structure to meet the rear bumper low speed impact test and ensure proper absorption of impact energy and avoid any damage to rear lamp of the vehicle. This paper shows a perfect example of sustainability with the help of complete modular construction of the frame structure. The proposed design uses a cost-effective way of assembling the physical part by comparing with benchmarking and within the Mahindra part library. The low speed impact structure is mounted directly to BIW panels without any extra foams. These frame structure are simple in design and rigid in construction by comparing with other OEM products and within all Mahindra vehicles.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

SMART HONKING

2019-11-21
2019-28-2463
Smart Honking Keywords-Safety, Connectivity, GPS M. Priyanka, Mahindra&Mahindra, India Sai Himaja Nadimpalli, Mahindra&Mahindra,India Keywords-Honking , Infotainment , GPS Research and/or Engineering Questions/Objective: In India unnecessary vehicular honking is the main reason for noise pollution. The problem is worst at traffic signals where drivers start honking without waiting for the signal to turn green or for traffic to move. Drivers show no respect to the law that prohibits the use of horn at traffic signals and other silent zones such as areas near hospitals, schools, religious places and residential areas. Vehicular honking in cities has reached at an alarming level and contributes approximately 70% of the noise pollution in our environment.The unwanted sound can affect human health and behavior, causing annoyance, depression, hypertension, stress, hearing loss, memory loss and panic attacks.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

C-Shaped Synchronizer Spring-theoretical Analysis and Validation

2012-09-24
2012-01-2002
This paper presents the analysis and experimental validation of c-spring and its stiffness properties in the gear shift synchronizer system. A synchronizer assembly for a transmission comprises of a synchronizer hub carried by a torque delivery shaft and a cone clutch member carried by a gear and a synchronizer blocking ring. The gear shift sleeve is meshing over the teeth of the clutch hub. The c-spring is positioned in the inner circumference of the rim position of the clutch hub and strut keys will be positioned at the slots on the clutch hub, which are usually 120 degree apart. As the sleeve moves while gear shifting, it pushes down the strut keys which compress the C-spring radially inward; this gives the strut load. The strut keys, which are pushed down by the sleeve, will apply force on the c-spring from radial directions. Since the c-spring is in the shape of an arc it is assumed as a curved beam for the analysis.
Technical Paper

Analytical Method to Determine Press-fit Tolerance between Torque Carrying Members

2012-09-24
2012-01-1996
This paper deals with an analytical method to calculate the press-fit tolerance and fits between gears and shaft for automotive applications. The relative interferences increase sharply in the small diameter range, therefore one must be especially careful when designing small diameter joints. The strength of press-fit depends on the amount of relative interference; extreme interference leads to excessive contact stresses between the gear and shaft eventually leading to failure. Too little interference leads to slippage of gear on the shaft. In the press fit connection a shaft's spline rolling operation and gear internal broaching is eliminated. It is more economical than a conventional spline connection. Press fit connections are used in various transmission between a shaft and a gear. They are used in 6 speed transmission to 9-speed transmission for (German based Vehicle Manufacturer) heavy and light commercial vehicle company.
X