Refine Your Search



Search Results

Technical Paper

Servomotor Controlled Standard Automated Manual Transmission for Rapid Smooth Shifts

Present day AMT unit uses two high pressure hydraulically operated pistons for select & shift operations which make the unit weigh around 8kg. Besides this it also makes the unit more complex & unreliable with a lot of torque interruption. The use of electrical servo motors steps in here as a better alternative as it provides a more precise and smoother shift. To test this we used a 5 Gear-Manual Transmission. For the selection, a precise 14.5 degree of twisting was required which was easily achieved by the servo motor. Further, shift of 10.5mm could be made possible by using the motor to shift the rack using a pinion on the shaft. This system then essentially eliminates the whole hydraulic circuit, the housing of actuator pack & power pack making it a simpler unit all together. A Motor is attached to the output shaft of the Transmission which drives in power while the AMT unit is making transition from one gear to another.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Gear Shift Fork Stiffness Optimisation

This paper presents a simulation of the stiffness of the shift fork of a manual transmission using contact pattern analysis and optistrut. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the simulation, co-relation and validation of the optimization of the gear shift fork stiffness. The shift system was modeled in the software to collate the synchronization force, shift system gap etc with the constraint on the shift fork. It is constrained by the synchronizer sleeve and the fork mounting on the gear shift rail. The synchronizer force is then applied on the gear shift fork pads which are translated to the synchronizer sleeve. It has a number of pads which come into contact at different occasion of the synchronization because of the varying stiffness of the fork.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Polypropylene Copolymer Material for Automotive Thin Wall Front Bumper with Integrated Grill Application

This paper describes modified polypropylene copolymer (PPCP) material for thin wall front bumper development (2.5 mm) with integrated grill in automotive application. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. This is a ready to mold material used in injection molding process. Front bumper and grill are functional components with slow speed impact requirement to absorb impact in real world. These parts have precise fitment requirement under sun load condition. Front bumper is also having other critical criteria with respect to vehicle variants such as aesthetic mold-in-color finish as well as painted finish. Grill has air entry performance criteria to ensure cooling efficiency in intercooler compartment.
Technical Paper

Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application

Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application Keywords - Tractor HVAC, Condenser clogging, Trash removal method. Research and/or Engineering Questions/Objective Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Design of Energy Absorbing Plastic Brackets to Meet Rear Crash Regulation ECE R42

Vehicle safety and adherence to rules and regulation is of utmost requirement for any OEM. ECE R42 is one of the most important test criteria for a vehicle to get launched. To prove this, we shall discuss the case of Low speed impact structure construction. In this paper, we are going to demonstrate the novel design of Polymer energy absorption structure to meet the rear bumper low speed impact test and ensure proper absorption of impact energy and avoid any damage to rear lamp of the vehicle. This paper shows a perfect example of sustainability with the help of complete modular construction of the frame structure. The proposed design uses a cost-effective way of assembling the physical part by comparing with benchmarking and within the Mahindra part library. The low speed impact structure is mounted directly to BIW panels without any extra foams. These frame structure are simple in design and rigid in construction by comparing with other OEM products and within all Mahindra vehicles.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
Technical Paper

Occupant Controlled Ventilation

Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter.
Technical Paper

Experimental Measurement to Predict Power Steering Pump Hub Load with Implementation of Belt Driven Starter Generator

The present scenario in automobile industry is formed on developing smart vehicles by introducing various feature towards fuel efficient, low emission, weight reduction, and advance safety feature with hybrid and micro-hybrid vehicles. One such feature gaining more popularity is the Belt Driven Starter Generator [1] for its contribution towards fuel efficiency, emission reduction [2], weight reduction and convenient packaging with engine/electrical interface. However this invention puts challenge of integration and increase in loading to various system like power steering pump and crank shaft pulley, as all these systems are interlinked with a common belt. In this interface links we observed the steering pump hub under risk of structural failure due to additional load to support Belt Driven Starter Generator. Failure to identify safe limits of hub load can affect safe vehicle operation [3].
Technical Paper

Evaluation of Performance of DPF Cell Structure for Soot Loading, Regeneration and Pressure Drop Using CFD Simulation

In recent times diesel powered vehicles are becoming popular due to improved performance and reduced exhaust emission with this the market share of diesel passenger cars expected to approach 60 % over the next few years. In compliance with future emission standards for diesel powered vehicles, it is required to use diesel particulate filters (DPF) along with other exhaust emission control devices. There is a need for more optimized DPF cell structure to collect maximum soot load with low pressure drop and improved exhaust performance from diesel vehicles in Indian driving conditions. In this thesis paper a detailed parametric study have been carried out on different DPF cell structures like Square, Hexagonal and combined cell geometry. The performances of different cell structure has been evaluated for maximum soot loading capacity and regeneration rate, pressure drop, temperature distribution across cell structure.
Technical Paper

Sensitivity Analysis of Hydraulic Brake Load Sensing Valve

Hydraulic Load sensing brake valves are used in vehicles from a long time in the market. They proportionate the rear brake line pressure according to the rear axle load in order to avoid the rear wheel lock during braking. During the actual test of the Hydraulic load sensing valve on a subject vehicle, there was drop in performance against its expected peak brake performance. In the current work a detailed analysis is made to understand the sensitivity of the load sensing valve & its effect on the vehicle performance. The parameters affecting the valve sensitivity along with vehicle level factors affecting the performance are analysed during the work.
Technical Paper

Powertrain Mounted Exhaust System Failure Correlation and Methodology Development in CAE

Exhaust system is one of the complex automotive systems in terms of performance and strength prediction due to combination of transient mechanical and thermal loads acting on it simultaneously. Traditionally, most of automotive vehicles have exhaust systems with hot end mounted on engine and cold end mounted on chassis or BIW through hangers. A new powertrain mounted exhaust system was developed in-house. This exhaust system underwent validation and evaluation during development phase. Durability concerns were observed on exhaust system in Track test and gear shift durability test. This paper focuses on identifying the root cause of these concerns based on the failures observed during evaluation in Accelerated Durability (ADT) and gear shift durability (GSD) tests. Based on the architecture and packaging space challenges in vehicle, engine is mounted on two mounts and a roll restrictor. Muffler, which has higher inertia, is mounted at higher offset with respect to engine rolling axis.
Technical Paper

Driveshaft Maximum Torque Estimation via Linear Model, Failure Analysis and Bench Test Simulation, an Alternative Approach

Primary function of a drive half shaft is to transfer torque from transaxle to the wheels in East West configuration powertrain vehicles. Conventional practice is to consider either 1st gear max torque or the Wheel slip torque, whichever being the maximum as design torque. However vehicle dynamics and Powertrain characteristics have a major influence on the Driveshaft torque and the torques experienced can thus go beyond the design torque. This questions the design endurance limit for the driveshaft based on conventional design. One such situation is the torque experienced by the driveshaft during vehicle coasting condition with gear downshift. The torque experienced in such a scenario can go beyond the maximum design torque leading to failure as was observed in Vehicle level validation test.
Technical Paper

Analytical Design and Development for Automobile Powertrain Mounts Using Low Fidelity Calculators

The excitation to a vehicle is from two sources, road excitation and powertrain excitation. Vehicle Suspension is designed to isolate the road excitation coming to passenger cabin. Powertrain mounts play a vital role in isolating the engine excitation. The current study focuses on developing an analytical approach using Low-Fidelity computer programs to design the Powertrain Mount layout and stiffness during the initial stage of product development. Three programs have been developed as a part of this study that satisfy the packaging needs, NVH requirements and static load bearing requirements. The applications are capable of providing the Kinetic Energy Distribution and Static Analysis (Powertrain Enveloping and Mount Durability) for 3-point and 4-point mounting systems and the ideal mount positions and stiffness for 3-point mounting systems.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Technical Paper

A Secondary De-Aeration Circuit for an Engine Cooling System with Atmospheric Recovery Bottle to Improve De-Aeration

In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved.