Refine Your Search

Topic

Author

Search Results

Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Analysis of Thermal Balance of Diesel Engine and Identification of Scope for Waste Heat Recovery

2013-11-27
2013-01-2744
Diesel engines as prime movers for passenger cars are becoming popular, primarily due to their superior thermal efficiency. However, the peak thermal efficiency does not exceed 35 to 40% even in the best engines. Huge efforts are being put in to improve engine efficiencies to meet ever stringent fuel economy requirements. Such efforts are mainly focused on combustion improvement and parasitic losses reduction. However, a large part of the energy input to engine is lost to cooling system, exhaust gases and other heat losses. Such losses are higher at part and low loads which is where the engine operates in normal usage conditions. This paper analyses in detail the various energy losses at different engine operating regimes. Quantification of losses and understanding of loss mechanism serves as a starting point for future technologies to recover the lost energy. Quantification of losses: Losses in different systems are quantified at different engine operating regimes.
Technical Paper

Base Engine Value Engineering for Higher Fuel Efficiency and Enhanced Performance

2013-11-27
2013-01-2748
To sustain market leadership position one has to continuously improve their product and services so that on one hand customer expectations are met and on the other hand business profitability is maintained. Value engineering is one of the approach through which we can achieve these two objectives simultaneously. Enhancing the value of running products is always a challenge as there is limited scope and flexibility to modify the current design and processes. Value engineering approach, integrated in product development cycle, brings great opportunity to upgrade the new and running products. This study reveals approach to upgrade the base engine of Maruti Alto. Upgraded engine is used in Alto 800 vehicle launched in October 2012. Improvement points were studied based on the business requirement, market competition, and legislative requirements. Based on functional improvement points, all the design parameters were studied and finalized.
Technical Paper

Simulating Real World Driving: A Case study on New Delhi

2016-02-01
2016-28-0236
In the Indian Context, Fuel Economy of a vehicle is one of key elements while buying a Car. The fuel economy declared by OEMs (Original Equipment Manufacturers) is one of the key indicators while assessing the fuel economy. However it is based on a standard driving cycle and evaluated under standard conditions as mandated by emission legislation. As the driving pattern has a major influence on fuel economy, the objective of this paper is to study real world driving patterns and to define a methodology to simulate a real world driving cycle. A case study was done on Delhi City, by running a fleet of vehicles in different traffic conditions. Thereafter data analysis like acceleration %, specific energy demand per distance, Acceleration vs. Vehicle Speed distribution etc. was done with the help of MATLAB. The final validation of cycle was done by comparing Lab results with on-road Fuel Economy data.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Challenges of Hydraulic Engine Mount Development for NVH Refinement

2018-04-03
2018-01-0681
NVH refinement of passenger vehicle is essential to customer acceptance for premium or even mid-size segment passenger cars. Hydraulic engine mount is becoming common for these segments to reduce engine bounce, idle shake and noise transfer to passenger cabin. Modern layout of hydraulic mount with integrated engine-bracket and smaller size insulator has made it cost-effective to use due to reduction of cost gap from conventional elastomeric mounts. However the downsizing and complex internal structure may create some new types of noises in passenger cabin which are very difficult to identify in initial development stage. Main purpose of hydraulic mount is to provide high damping at low-frequency range (6~15 Hz) and to isolate noise transfer from combustion engine to passenger cabin within wide frequency range (15~600 Hz).This paper emphasizes on challenges and problems related to hydraulic mount development.
Technical Paper

Study on Design Optimization of Air Intake Snorkel Using 1D & 3D Tools

2018-04-03
2018-01-0490
With the increase in customer expectations related to engine performance and vehicle NVH, it has become the need of the hour for automotive industry to continuously use state of-the-art designs. These dynamic concepts require innovative simulation techniques correlated with testing to value engineer the optimal design and further validations. Compact engine room packaging and futuristic aesthetics changes in styling have further magnified these challenges. Packaging air intake system and positioning air intake snorkel are among such challenges that play a critical role for improving engine performance and life. The objective of this paper is to propose an approach for optimizing design and position of air intake snorkel to meet desired intake air temperature, noise targets with no water entry in to engine. Full vehicle computational fluid dynamics (CFD) simulation is performed for predicting air intake temperature, water wading and 1D simulation for suction flow noise.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Intake and Exhaust Ports Design for Tumble and Mass Flow Rate Improvements in Gasoline Engine

2019-04-02
2019-01-0763
In recent years, world-wide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, as defined by international regulatory authorities. Many technologies have been already developed, or are currently under study, to meet legislated targets. In-line with above objective, the enhancement of turbulence intensity inside the combustion chamber has a significant importance which contributes to accelerating the burning rate, to increase the thermal efficiency and to reduce the cyclic variability [9]. Turbulence generation is mainly achieved during the intake stroke which is strictly affected by the intake port geometry, orientation and to certain extends by combustion chamber masking. Conservation of turbulence intensity till 700~720 crank angle (CA) is achieved by optimized shape of combustion chamber geometry and piston bowl shape.
Technical Paper

Aerodynamic Design Optimization in Rear End of a Hatchback Passenger Vehicle

2019-03-25
2019-01-1430
Aerodynamic evaluation plays an important role in the new vehicle development process to meet the ever increasing demand of Fuel Economy (FE), superior aero acoustics and thermal performance. Computational Fluid Dynamics (CFD) is extensively used to evaluate the performance of the vehicle at early design stage to overcome cost of proto-parts, late design changes and for time line adherence. CFD is extensively used to optimize the vehicle’s shape, profiles and design features starting from the concept stage to improve the vehicle’s aerodynamic performance. Since the shape of the vehicle determines the flow behavior around it, the performance is different for hatchback, notchback and SUV type of vehicles. In a hatchback vehicle, the roof line is abruptly truncated at the end, which causes flow separation and increase in drag.
Technical Paper

Noise Problem Resolution and Sound Quality Improvement of Valve Timing Belt in 4 Cylinders PFI Gasoline Engine

2019-04-02
2019-01-0783
IC Engine Timing belt is a major noise prone area and it takes time during development to achieve acceptable NVH characteristics. In an existing engine under series production noise problem observed due to excitation of timing belt span by crank timing sprocket tooth. From vehicle perspective noise was heard in vehicle cabin at around idling RPM and a second peak observed around twice the initial RPM. This paper includes a methodology for use of computer based analytical simulation methods to predict timing belt dynamic behavior and NVH characteristics. Along with development of computer based multi body dynamic model for timing belt, validation of simulation model with actual testing was done and after correlation of testing and simulated results countermeasure were finalized based on iterations in multi body simulation model.
Technical Paper

Design Optimization of Front Hood Structure for Meeting Pedestrian Headform Protection in an Existing Vehicle

2019-04-02
2019-01-0615
Automotive industry today faces the unprecedented challenges both in terms of adapting to changing customer demands in terms of vehicle aesthetics, features or performance as well as meeting the mandatory regulatory requirements, which are being regularly upgraded and becoming stringent day by day. Vehicle hood, being part of vehicle front fascia, needs to fulfill the requirement of vehicle aesthetics as its primary condition. At the same time, every automobile manufacturer has a lineup of older platforms, which are in production and needs to comply with upcoming stricter safety norms, having a structure in under hood area designed as per older philosophy, which further reduces the space available for energy absorption. This makes the structure optimization in vehicle hood area much more challenging. Pedestrian protection - an upcoming regulation in India, has seen some major development in recent times.
Technical Paper

Design Considerations for Plastic Fuel Rail and Its Benefits

2014-04-01
2014-01-1041
Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
Technical Paper

Design Optimization of Engine Mount De-Coupler for Cabin Noise Refinement in Passenger Vehicle

2019-01-09
2019-26-0199
Quieter cabins are indispensable in today’s evolving automobile industry. The effective isolation of vehicle noise and vibrations are essential to achieve the above. Since, low frequency powertrain induced NVH has been one of the major contributors affecting noise and vibration levels inside the passenger cabin. Thus, use of hydraulic mounts is a natural choice for all major OEMs. The objective of this study is to optimize the design of the hydraulic mount de-coupler unit, to reduce the abnormal noise felt inside the cabin. This condition was observed when the vehicle was driven at 20~30 km/h over undulated road surface, found very often in Indian drive conditions. Due to lack of accuracy and repeatability errors during NVH data acquisition in actual driving condition, the above road profile was captured and subsequently simulated in an acoustically treated BSR (Buzz, Squeak and Rattle) four poster simulator.
Technical Paper

Design Optimization of Trunk Lid Torsion Bar Type Trunk Lid Pop Up Mechanism

2019-10-11
2019-28-0111
Trunk lid (TL) can be opened using hydraulic or pneumatic balancers, coil springs, torsion bars or combination of the above. TL Opening Mechanism specific to Trunk Lid Torsion Bar (TLTB) is being discussed in the paper. After de-latching, TL should open smoothly and stop at such a height that it is visible from driver seat. The system consists of a four bar linkage mechanism, in which the fixed link is formed by BIW Bracket. Connecting link, TL Hinge Arm and Torsion bar arm form the other three links. Hinge has its one end attached to TL and the other end to BIW bracket. Torsion bar arm transfers torque to TL hinge through the connecting link. Major challenges in designing TLTB mechanism are part tolerances, C.G position and Weight variations in individual parts, Torsion bar Raw Material variation, uncertain friction in the system etc.
Technical Paper

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure.
Technical Paper

Evaluating the Effect of Light Weighting Through Roll Stiffness Change on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
Objective To achieve better fuel economy and reduced carbon footprint, OEMs are reducing the sprung and unsprung mass. This translates into a reduction in stiffness which profoundly deteriorates the handling/road holding characteristics of the vehicle. To model these changes in stiffness, modifications are made to suspension roll stiffness at the front and rear. This study compares different configurations of roll stiffness and evaluates vehicle behavior using frequency response characteristics and phase change of Yaw Gain recorded. The present work associates acquired data with subjective feedback to outline the shift in vehicle balance emerging from a variation of sprung and unsprung mass ratio. Methodology To study the frequency response characteristics of the vehicle, the pulse input is chosen for this. An ideal pulse input’s Fourier transform represents constant amplitude over all the frequency ranges. By giving a single input, the system is subjected to a range of frequencies.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
X