Refine Your Search

Topic

Author

Search Results

Journal Article

Improving STL Performance of Automotive Carpets with Multi-layering and Effective Decoupling

2015-01-14
2015-26-0136
Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Use of Machine Learning to Predict the Injuries of the Occupant of a Vehicle Involved in an Accident

2021-09-22
2021-26-0003
As per the 2018 MoRTH accident report, there were 467,044 accidents, out of which 137,726 were fatal which resulted in 151,417 fatalities. In order to get an idea of the reasons for injuries and estimate the benefits of any intervention, a mathematical model should go a long way. This study is aimed at the development of such a model to predict the injuries sustained by the occupants of an M1 vehicle. We used a detailed accident database of 'Road Accident Sampling System India' (RASSI). RASSI, since 2011, has been collecting traffic accident data scientific across various locations in India. In the data, the occupant injuries are classified as No injury, Minor, Serious and Fatal We used the data of about 4700+ M1 occupants for the study & used almost 40 input parameters to determine the outcome. Based on the data, an algorithm was developed with an overall accuracy of about 67%. The parameters represented human, infrastructure, and environment.
Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Road-Lab-Math (RLM) Strategy for Improving Vehicle Development Efficiency

2021-09-22
2021-26-0193
In today’s Indian automotive industry, vehicles are becoming more complex and require more efforts to develop. Also, new and upcoming regulations demand more trials under varied driving conditions to ensuring robustness of emission control. Combined with expectations of customer to get new products more frequently, requires solutions and methods that can allow more trials with required accuracy to ensure compliance to stricter regulation and delivery a quality product. This translates into more trials in less time during the development life cycle. Recently, to overcome above challenge, there has been focus on simulating the vehicles trials in engine bench environment. ‘Road to Lab to Math’ (RLM) is a methodology to reduce the effort of On-road testing and replace it with laboratory testing and mathematical models. Also, on-road testing of prototype vehicles is expensive as it requires physical parts.
Journal Article

Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine

2012-01-09
2012-28-0010
Continuously rising fuel prices and global concern on climate change have resulted in a need to deliver vehicles with increased fuel economy. This has to be achieved without compromising on performance, durability and cost. Passenger car manufacturers are looking at various ways to maximize fuel economy. Major part of fuel saving can be tapped from engine itself. This can be done by activities on engine as below: Improving overall combustion efficiency and hence BSFC Efficient thermal management. Weight reduction of engine parts or complete downsizing Hybridization. Reducing engine losses i.e. parasitic losses from auxiliaries and frictional losses. This paper is focused on the reduction of engine frictional losses (FMEP) through the use of low viscosity lubrication oils. Various factors in lubrication oil contribute to friction. Experimental approach to quantifying the effect of different parameters of lubrication oil on total engine friction is presented.
Technical Paper

Development of Bi-fuel CNG Engine based passenger vehicle and Field Trials study in Indian condition

2009-12-13
2009-28-0019
Compressed natural gas (CNG) is being explored as a sustainable renewable fuel for vehicles in India due to mounting foreign exchange expenditure to import crude petroleum. Impending emissions regulations for diesel engines, specifically exhaust particulate emissions have caused engine manufacturers to once again examine the potential of alternative fuels. Much interest has centered on compressed natural gas (CNG) due to its potential for low particulate and hydrocarbon based emissions. Natural gas engine development projects have tended toward the use of current gasoline engine technology (stoichiometric mixtures, closed-loop fuel control and exhaust catalysts). Significant amount of research and development work is being undertaken in India to investigate various aspects of CNG utilization in different types of engines. This paper discusses about the development of the bi-fuel CNG engine for passenger vehicular application.
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Determining the Parameters of Feeling for a Mechanism of Seat Adjustment

2017-03-28
2017-01-1392
The seating system is an inseparable part of any automobile. Its main function is not only to provide a space to the user for driving but also to provide support, comfort and help to ergonomically access the various features and necessary operations of the vehicle. For comfort and accessibility, seats are provided with various mechanisms for adjustments in different directions. Typical mechanisms used for seating adjustment include seatback recliners, lifters (height adjusters), longitudinal adjusters, lumber support, rear seat folding mechanism etc. These mechanisms can be power operated or manual based on vehicle/market requirements. For manual mechanisms, the occupant adjusts the position of seat by operating the mechanism with his/her hand. Often comfort to the occupant during operation is limited to the operating effort of the mechanism. However, as will be shown through this study, operating effort is only one of the parameters which provide overall comfort feeling.
Technical Paper

Study and proposals for improving static comfort in automotive seating

2017-03-28
2017-01-1389
Automotive seating is designed by considering safety, comfort and aesthetics for the occupants. Seating comfort is one of the important parameters for the occupant for enhancing the overall experience in a vehicle. Seating comfort is categorized as static (or showroom) comfort and dynamic comfort. The requirements for achieving static and dynamic comfort can sometimes differ and may require design parameters such as PU hardness to be set in opposite directions. This paper presents a case wherein a base seat with good dynamic comfort is taken and an analysis is done to improve upon the static comfort, without compromising on the dynamic comfort. The study focuses on improving the initial comfort by considering various options for seating upholstery.
Technical Paper

Investigation on the Effect of Coolant Temperature on the Performance and Emissions of Naturally Aspirated Gasoline Engine

2011-01-19
2011-26-0089
Downsizing of engines is becoming more popular as manufacturers toil for increased fuel economy. Due to the downsizing of engines, Brake Mean Effective Pressure (BMEP) tends to increase, which in turn increases the heat release from engine. This necessitates the need for optimizing cooling system in order to get higher engine output and lower emissions to comply with stringent emission norms. In earlier engines, thermo-siphon principle was used with water as the coolant. This has been replaced in modern engines with pressurized cooling system with coolants like ethylene glycol mix. Along with the conventional objective of increased material durability with the optimized engine cooling system, it has been found that there is an improvement in the engine output due to increased charging efficiency. This paper describes the effect of engine coolant temperature on performance, emission and efficiency of a three-cylinder naturally aspirated spark ignited engine.
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

Optimal Torque Handling in Hybrid Powertrain for Fuel Economy Improvement

2013-01-09
2013-26-0068
In this work, a parallel full Hybrid Electric Vehicle (HEV) was optimized to further lower its carbon footprint without opting for any additional hardware change. The study was focused to first recognize the system efficiency of the HEV and identify its low efficiency points over the MIDC. Thereafter, different functions of the HEV were studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. This, along with the low system efficiency points helped in identifying the potential areas for improvement in fuel economy. With changes in calibration and control strategies resulting in an optimal torque handling between the E-machine and the ICE, it was established through simulation and subsequent experiments conducted on chassis dynamometer, that the fuel economy of the HEV tested can be improved with the performance remaining unchanged and emissions meeting regulatory requirements.
Technical Paper

A Study on the Idle Combustion Stability of a CNG Powered Naturally Aspirated Engine

2013-01-09
2013-26-0003
In view of rising oil prices and concern for the greenhouse gas emissions, the need for greener and efficient engines is increasing. Thus, automobile manufacturers are trying to improve the performance and efficiency of the engine while keeping compliance with the stringent emission norms. CNG, with its high H/C ratio, makes it a clean fuel by significantly reducing the emission of green-house gas carbon-dioxide. CNG, being cheap compared to other conventional fuels, is an added advantage and hence is gaining popularity. Along with improvement in the part load and full load efficiency, Engine manufactures are looking to lower the idle speed for better fuel economy. Lowering the idle speed has to be optimized as, it reduces the combustion stability of the engine which in turn increases the variation of Indicated Mean Effective Pressure (IMEP) resulting in high structural vibration from the engine and to vehicle body.
Technical Paper

Analysis of Thermal Balance of Diesel Engine and Identification of Scope for Waste Heat Recovery

2013-11-27
2013-01-2744
Diesel engines as prime movers for passenger cars are becoming popular, primarily due to their superior thermal efficiency. However, the peak thermal efficiency does not exceed 35 to 40% even in the best engines. Huge efforts are being put in to improve engine efficiencies to meet ever stringent fuel economy requirements. Such efforts are mainly focused on combustion improvement and parasitic losses reduction. However, a large part of the energy input to engine is lost to cooling system, exhaust gases and other heat losses. Such losses are higher at part and low loads which is where the engine operates in normal usage conditions. This paper analyses in detail the various energy losses at different engine operating regimes. Quantification of losses and understanding of loss mechanism serves as a starting point for future technologies to recover the lost energy. Quantification of losses: Losses in different systems are quantified at different engine operating regimes.
Technical Paper

Base Engine Value Engineering for Higher Fuel Efficiency and Enhanced Performance

2013-11-27
2013-01-2748
To sustain market leadership position one has to continuously improve their product and services so that on one hand customer expectations are met and on the other hand business profitability is maintained. Value engineering is one of the approach through which we can achieve these two objectives simultaneously. Enhancing the value of running products is always a challenge as there is limited scope and flexibility to modify the current design and processes. Value engineering approach, integrated in product development cycle, brings great opportunity to upgrade the new and running products. This study reveals approach to upgrade the base engine of Maruti Alto. Upgraded engine is used in Alto 800 vehicle launched in October 2012. Improvement points were studied based on the business requirement, market competition, and legislative requirements. Based on functional improvement points, all the design parameters were studied and finalized.
Technical Paper

Dynamic Simulation of Shift Tower

2013-11-27
2013-01-2790
Manual transmission is one of the key system of power-train to which driver directly interacts, so its shift feeling is important for the merchantability. The importance of the gear shift quality of manual transmissions has increased significantly over the past few years as the refinement of other vehicle systems has increased and also due to rise in customer expectations. Shift Tower is a system to assist the driver during selecting and shifting of Gears. The dynamic interaction of shift Tower at a component level is difficult to interpret by traditional test methods and virtually impossible at concept stage. To overcome these difficulties a dynamic model of the entire Shift Tower mechanism i.e. Shift select lever, 3D Ramp, Detent Pin, Spring, Interlock mechanism has been created. The model predicts the gearshift quality i.e. Shift and Select force values for a given set of input parameters, which can be correlated against test data.
X