Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Effect of Cooling of Burned Gas by Vertical Vortex on NOx Reduction in Small DI Diesel Engines

2004-03-08
2004-01-0125
A new nitrogen oxide (NOx) reduction concept is suggested. A strong vertical vortex generated within the combustion bowl can mix hot burned gas into the cold excess air at the center of the combustion-bowl. This makes the burned gas cool rapidly. Therefore, it is possible to reduce NOx, which would be produced if the burned gas remained hot. In this paper the effect was verified with a 3D-CFD analysis of spray, air, combustion gas, and thermal efficiency as well as experiments on a 4-cylinder 2.0-liter direct injection diesel engine. The results confirmed that the vertical vortex was able to be strengthened with the change of spray characteristics and the combustion bowl shapes. This strengthened vertical vortex was able to reduce NOx by approximately 20% without making smoke and thermal-efficiency worse. Above results proved the effectiveness of this method.
Technical Paper

Developed Technologies of the New Rotary Engine (RENESIS)

2004-03-08
2004-01-1790
The newly developed rotary engine has achieved major progress in high performance, improved fuel economy and clean exhaust gas by innovative action. The engine of the next generation is named RENESIS, which stands for “The RE (Rotary Engine)'s GENESIS” or the rotary engine for the new millennium. The peripheral exhaust port of the previous rotary engine is replaced by a side exhaust port system in the RENESIS. This allows for an increase in the intake port area, thus producing higher power. Exhaust opening timing is retarded to improve thermal efficiency. The side exhaust port also allows reducing the internal EGR, stabilizing the combustion at idling. The improved thermal efficiency and the stabilized idle combustion result in higher fuel economy. In addition, the side exhaust port allows a reduction of the HC mass, realizing reduced exhaust gas emission.
Technical Paper

Investigation of Increase in Aerodynamic Drag Caused by a Passing Vehicle

2018-04-03
2018-01-0719
On-road turbulences caused by sources such as atmospheric wind and other vehicles influence the flow field and increases the drag in a vehicle. In this study, we focused on a scenario involving a passing vehicle and investigated its effect on the physical mechanism of the drag increase in order to establish a technique for reducing this drag. Firstly, we conducted on-road measurements of two sedan-type vehicles passed by a truck. Their aerodynamic drag estimated from the base pressure measurements showed different increment when passed by the truck. This result raised the possibility of reducing the drag increase by a modification of the local geometry. Then, we conducted wind tunnel measurements of a simplified one-fifth scale vehicle model in quasi-steady state, in order to understand the flow mechanism of the drag increase systematically.
Technical Paper

Aggressivity-Reducing Structure of Large Vehicles in Side Vehicle-to-Vehicle Crash

2005-04-11
2005-01-1355
Driver fatality rate of a passenger vehicle is considerably high when struck on the side by an LTV (light truck and van). Aggressivity of LTVs, particularly in side crashes, needs to be reduced to improve this incompatible situation. Crash energy absorption share of a passenger car struck on the side by an LTV was measured through component tests. As a result, B-pillar of the struck passenger car was found to receive most of the crash energy intensively. This intensive energy triggered large B-pillar deformation. Computer simulation proved that B-pillar deformation was closely related to occupant injury. The key to mitigate the injury of side-struck car occupant, therefore, is to disperse crash energy to other structural parts than B-pillar. Front-end structures of LTVs that realize crash energy dispersion were designed and examined. The structures include (a) optimization of the vehicle height, and (b) adoption of a forward-extended sub-frame.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Technical Paper

Fuel Consumption Improvement of a New Generation Diesel Engine for Passenger Cars by Quantitative Management of Thermal Efficiency Control Factors and Expansion of Load Range of Premixed Charge Compression Ignition Combustion

2023-09-29
2023-32-0022
To achieve carbon-neutrality, internal combustion engines need to further improve their thermal efficiency to reduce CO2 emissions. To accomplish this, it is necessary to quantify and enhance five factors that control indicated thermal efficiency: compression ratio, specific heat ratio, combustion duration, combustion timing, and heat transfer to wall. In this work, quantitative targets for each factor were defined, which were derived from a simulation that considered the influence of heterogeneity of diesel combustion on thermal efficiency. The simulation utilized a two-zone combustion model. In particular, the targets for the combustion duration, combustion timing and heat transfer to wall were increased significantly compared to those for a conventional engine, in anticipation of an expansion of the load range of premixed charge compression ignition (PCI) combustion to higher loads.
X