Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

A Study of Compatibility and Vehicle Front Stiffness Based on Real-World Accidents

2007-08-05
2007-01-3719
The aim of this research was to find vehicle characteristics including stiffness that is effective for compatibility performance. Compatibility is said to be affected by three factors: vehicle mass, geometry and stiffness (1, 2). Of these factors, stiffness has more flexibility at the design stage than vehicle mass and geometry which are limited by the vehicle application. However, the stiffness is assumed to have a conflict issue between the self-protection and the partner-protection (3). In this research, it was analyzed comprehensively how some defined factors such as stiffness, mass, crash stroke and other vehicle characteristics indices relate to each occupant injury rate of the case and its partner vehicle in the real-world accidents. Both “front-to-front” and “front-to-side” crash occupants were covered.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

2004-03-08
2004-01-0336
Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Developed Technologies of the New Rotary Engine (RENESIS)

2004-03-08
2004-01-1790
The newly developed rotary engine has achieved major progress in high performance, improved fuel economy and clean exhaust gas by innovative action. The engine of the next generation is named RENESIS, which stands for “The RE (Rotary Engine)'s GENESIS” or the rotary engine for the new millennium. The peripheral exhaust port of the previous rotary engine is replaced by a side exhaust port system in the RENESIS. This allows for an increase in the intake port area, thus producing higher power. Exhaust opening timing is retarded to improve thermal efficiency. The side exhaust port also allows reducing the internal EGR, stabilizing the combustion at idling. The improved thermal efficiency and the stabilized idle combustion result in higher fuel economy. In addition, the side exhaust port allows a reduction of the HC mass, realizing reduced exhaust gas emission.
Technical Paper

Accidents Data Analysis for the Real World Safety Enhancement

2003-03-03
2003-01-0504
To reduce real world fatal/serious/minor injuries, factors causing such injuries should be investigated in depth from wider perspectives. The aim of this paper is to clarify the factors based on Japanese accident database compiled by ITARDA (Institute for Traffic Accident Research and Data Analysis). ITARDA database has data for injury rates, seatbelt use rate of driver and age of driver involved in crashes, etc. by vehicle model. As a result of an elaborate statistical analysis, the most influential and essential factors on all injuries including fatality were quantitatively found to be seatbelt use rate and vehicle weight. The increase by 1% in seatbelt use rate makes injury rate decrease by 7%. The influence of vehicle weight is 1.7 times higher than seatbelt use rate. Multiple regression analysis on these two parameters was also conducted. The present analysis successfully predicted all injury rates by model per 10,000 units.
Technical Paper

Investigation of Increase in Aerodynamic Drag Caused by a Passing Vehicle

2018-04-03
2018-01-0719
On-road turbulences caused by sources such as atmospheric wind and other vehicles influence the flow field and increases the drag in a vehicle. In this study, we focused on a scenario involving a passing vehicle and investigated its effect on the physical mechanism of the drag increase in order to establish a technique for reducing this drag. Firstly, we conducted on-road measurements of two sedan-type vehicles passed by a truck. Their aerodynamic drag estimated from the base pressure measurements showed different increment when passed by the truck. This result raised the possibility of reducing the drag increase by a modification of the local geometry. Then, we conducted wind tunnel measurements of a simplified one-fifth scale vehicle model in quasi-steady state, in order to understand the flow mechanism of the drag increase systematically.
Technical Paper

Aggressivity-Reducing Structure of Large Vehicles in Side Vehicle-to-Vehicle Crash

2005-04-11
2005-01-1355
Driver fatality rate of a passenger vehicle is considerably high when struck on the side by an LTV (light truck and van). Aggressivity of LTVs, particularly in side crashes, needs to be reduced to improve this incompatible situation. Crash energy absorption share of a passenger car struck on the side by an LTV was measured through component tests. As a result, B-pillar of the struck passenger car was found to receive most of the crash energy intensively. This intensive energy triggered large B-pillar deformation. Computer simulation proved that B-pillar deformation was closely related to occupant injury. The key to mitigate the injury of side-struck car occupant, therefore, is to disperse crash energy to other structural parts than B-pillar. Front-end structures of LTVs that realize crash energy dispersion were designed and examined. The structures include (a) optimization of the vehicle height, and (b) adoption of a forward-extended sub-frame.
Technical Paper

The Evaluation of the Influence of Vehicle Crashworthiness and Interior Parts on Occupant Injury

1989-09-01
892009
In order to secure effective occupant protection at vehicle collisions, it is necessary to conduct close examination into vehicle crash characteristics as well as interior parts, etc. This paper analyzes the behavior of a HYBRID III dummy restrained by three point seatbelt using MVMA2D computer simulation program at a 35 mph vehicle frontal barrier crash. As a result, it is found for good agreement between experiment and simulation that the exact input data of successive toeboard intrusion play an important role. As for the parametric study on vehicle crashworthiness, the authors propose the convenient method to represent the actual crash pulse by two simplified trapezoids. Then using these trapezoids, the parametric study clarifies the influence of vehicle deformation characteristics as well as the interior parts on dummy injury.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Optimized Restraint Systems for Various-Sized Rear Seat Occupants in Frontal Crash

2003-03-03
2003-01-1230
Of the injuries sustained by belted rear occupants in a frontal collision event in Japan, the neck and the head are the regions of the body most likely to be injured, while children and female occupants are accounting for the highest rate of injuries. For the purpose of reducing rear seat occupant injuries, the occurrence mechanism of neck and head injuries is clarified by sled tests with the current rear seat belt system. When a high load is applied to the occupant via the seat belt, the occupant experiences sudden deceleration of the chest, resulting in a great relative velocity difference between the head and the chest. This causes injury to the occupant's neck and head. To reduce occupant injuries, therefore, it is important to minimize the relative velocity difference by control of belt load.
X