Refine Your Search

Topic

Author

Search Results

Technical Paper

Design Considerations & Characterization Test Methods for Activated Carbon Foam Hydrocarbon Traps in Automotive Air Induction Systems

2007-04-16
2007-01-1429
As OEMs race to build their sales fleets to meet ever more stringent California Air Resources Board (CARB) mobile source evaporative emissions requirements, new technologies are emerging to control pollution. Evaporative emissions emanating from sources up-stream in the induction flow and venting through the ducts of the engine air induction system (EIS) need to be controlled in order classify a salable vehicle as a Partial Zero Emissions Vehicle (PZEV) in the state of California. As other states explore adopting California's pollution control standards, demand for emissions control measures in the induction system is expected to increase. This paper documents some of the considerations of designing an adsorbent evaporative emissions device in to a 2007 production passenger car for the North American and Asian markets. This new evaporative emissions device will be permanently installed in the vehicle's air cleaner cover without requiring service for 150K miles (expected vehicle life).
Technical Paper

Model Order Reduction Using Basis Expansions for Near field Acoustic Holography

2009-05-19
2009-01-2174
The identification/localization of propulsion noise in turbo machinery plays an important role in its design and in noise mitigation techniques. Near field acoustic holography (NAH) is the process by which all aspects of the sound field can be reconstructed based on sound pressure measurements in the near field domain. Identification of noise sources, particularly in turbo-machinery applications, efficiently and accurately is difficult due to complex noise generation mechanisms. Backward prediction of the sound field closer to the source than the measurement plane is typically an unstable “ill-posed” inverse problem due to the presence of measurement noise. Therefore regularized inversion techniques are typically implemented for noise source reconstruction. Another major source of ill-posedness in NAH inverse problems is a larger number of unknowns (sources) than available pressure measurements. A model reduction technique is proposed in this paper to address this issue.
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Technical Paper

An Investigation of Fluid Flow During Induction Stroke of a Water Analog Model of an IC Engine Employing LIPA

1995-02-01
950726
This paper presents results from experiments performed in an axisymmetric water analog model of a four-stroke IC engine using the optical velocimetry technique LIPA (Laser Induced Photochemical Anemometry). The investigation can be described as a fundamental scientific inquiry into the fluid dynamics encountered during engine operation, with the long term goal of increasing performance. An application of LIPA to a fluid dynamics problem delivers two-dimensional fields of velocity vectors which are projections of the full three-dimensional vectors in single measurement steps. From an evaluation of a velocity field vorticity information can be obtained readily. Velocity fields and vorticity distributions are, in this study, the basis for the evaluation of seven parametric quantities. Some of these may become tools that give engineers ‘rule of thumb’ indications of the mixing that is occurring.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces

2011-09-13
2011-01-2183
EGR coolers are used in combustion engines to reduce NOx emissions. However, heat transfer in these coolers also results in thermophoresis-temperature-gradient driven motion of suspended particles towards cooler regions-which leads to significant soot deposition. A simple one-dimensional model is proposed to predict the deposition velocity and soot layer thickness that compares reasonably well with experimental data. The behavior of soot deposits on cooled surfaces is complex, with the thickness of the soot layer stabilizes after around 100 hours, reaching a uniform, thickness over the entire heat-exchanger surface. An analysis of this trend and a tentative mechanism to explain this type of behavior is given, based on experimental observations.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

2017-03-28
2017-01-1088
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Technical Paper

An Experimental Study on the Factors Affecting Ethanol Ignition Delay Times in a Rapid Compression Machine

2019-04-02
2019-01-0576
Ignition delay, using a rapid compression machine (RCM), is defined as the time period between the end of compression and the maximum rate of pressure rise due to combustion, at a given compressed condition of temperature and pressure. The same compressed conditions can be reached by a variety of combinations of compression ratio, initial temperature, initial pressure, diluent gas composition, etc. It has been assumed that the value of ignition delay, for a given fuel and at a given set of compressed conditions, would be the same, irrespective of the variety of the above-mentioned combinations that were used to achieve the compressed conditions. In this study, a range of initial conditions and compression ratios are studied to determine their effect on ignition delay time and to show how ignition delay time can differ even at the same compressed conditions.
Technical Paper

A Table Update Method for Adaptive Knock Control

2006-04-03
2006-01-0607
Knock correction is the spark angle retard applied to the optimum ignition timing to eliminate knock. In adaptive knock control, this amount of spark retard at an operating point (i.e. Speed, load) is stored in a speed/load characteristic map. It will be reused when the engine is operated in this range once more. In this paper, a method to learn the knock correction values into a speed/load characteristic map is described. This method proportionally distributes the knock correction into the characteristic map according to the distance between the speed/load of these nodes and the current operating point. The distributed knock correction value is filtered and accumulated in its adjacent nodes. Simulation examples demonstrate that the retrieved values from the map by the proposed method are smoother than those produced by the method of [2][3]. The mathematical basis for this method is developed. The one and two independent variable cases are illustrated.
Technical Paper

International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

2005-07-11
2005-01-2892
An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use or have been proposed for use in spacecraft life support systems. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has experienced operational limitations.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Technical Paper

Environmental Systems Considerations for Aircraft Cabins During Ground Operation

2002-11-05
2002-01-2941
The quality of outside air during ground operations was analyzed by comparing airport and engine exhaust data to exposure limits and odor thresholds. The results indicated that the outside air may contain compounds in high enough concentrations to be odorous. If the odor is to be treated, the important design criteria that must be considered include the phase of compounds, compound type, location of treatment device on the aircraft, pressure drop, operating temperature, and maintenance interval. Finally, a control strategy is outlined that monitors the air quality as well as the efficiency of an air treatment system.
Technical Paper

Acoustic Modeling and Radiated Noise Prediction for Plastic Air-Intake Manifolds

2003-05-05
2003-01-1448
Reliable prediction of the radiated noise due to the air pressure pulsation inside air-intake manifolds (AIM) is of significant interest in the automotive industry. A practical methodology to model plastic AIMs and a prediction process to compute the radiated noise are presented in this paper. The measured pressure at the engine inlet valve of an AIM is applied as excitation on an acoustic boundary element model of the AIM in order to perform a frequency response analysis. The measured air pressure pulsation is obtained in the crank-angle domain. This pressure is read into MATLAB and transformed into the frequency domain using the fast Fourier transform. The normal modes of the structure are computed in ABAQUS and a coupled analysis in SYSNOISE is launched to couple the boundary element model and the finite element model of the structure. The computed surface vibration constitutes the excitation for an acoustic uncoupled boundary element analysis.
Technical Paper

Fully Recyclable Olefinic Instrument Panels

2002-03-04
2002-01-0310
Recycled resins can meet performance requirements on products which were initially designed for virgin materials. Olefinic instrument panel (I/P) scrap is being recycled from the Mazda Tribute and the Ford Escape into glove box bins. As a result, a quality part is being supplied to the customer and Visteon's Saline Plant has realized both increased plant operating efficiencies and landfill cost avoidance. The development process is described including: plant regrind sources, part molding and testing.
Technical Paper

Simulation of Pressure Pulsations in a Gasoline Injection System and Development of an Effective Damping Technology

2005-04-11
2005-01-1149
In today's search for a better fuel economy and lower emissions, it is essential to precisely control the injected fuel quantity, as demanded by the engine load, into each of the engine cylinders. In fuel injection systems, the pressure pulsations due to the rapid opening and closing of the injectors can cause uneven injected fuel amounts between cylinders. In order to develop effective techniques to reduce these pressure pulsations, it is crucial to have a good understanding of the dynamic characteristics of such fuel injection systems. This paper presents the benefits of using simulation as a tool to analyze the dynamic behaviors of a V8 gasoline injection system. The fuel system modeling, based on a one-dimensional (1D) lumped parameter approach, has been developed in the AMESim® environment. The comparison between the simulation results and the experimental data shows good agreement in fluid transient characteristics for both time and frequency domains.
Technical Paper

IC Engine Retard Ignition Timing Limit Detection and Control using In-Cylinder Ionization Signal

2004-10-25
2004-01-2977
Internal combustion engines are designed to maximize power subject to meeting exhaust emission requirements and minimizing fuel consumption. However, the usable range of ignition timing is often limited by knock in the advance direction and by combustion instability (partial burn and misfire) in the retard direction. This paper details a retard limit management system utilizing ionization signals in order to maintain the desired combustion quality and prevent the occurrence of misfire without using fixed limits. In-cylinder ionization signals are processed to derive a metric for combustion quality and closeness of combustion to partial burn/misfire limit, which is used to provide a limiting value for the baseline ignition timing in the retard direction. For normal operations, this assures that the combustion variability is kept within an acceptable range.
X