Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck

1984-11-01
841711
A set of control functions have been investigated for a computer controlled diesel cooling system, using the vehicle engine cooling system code. Various engine operating conditions such as the engine load, engine speed, and ambient temperature are considered as the controlling variables in the control loops. The truck simulated in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and after-cooler. The vehicle also had a Kysor fan-clutch and shutter system. Comparison simulation tests between the conventional cooling system and the computer controlled cooling system using the Vehicle-Engine-Cooling Computer System model under different ambient and route conditions show that the computer controlled cooling system would offer the following benefits: 1.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
Technical Paper

Development of Steel Clad Aluminum Brake

2013-09-30
2013-01-2054
Aluminum based brake rotors have been a priority research topic in the DOE 1999 Aluminum Industry Roadmap for the Automobile Market. After fourteen years, no satisfactory technology has been developed to solve the problem of aluminum's low working temperatures except the steel clad aluminum (SCA) brake technology. This technology research started at Michigan Technological University (MTU) in 2001 and has matured recently for commercial productions. The SCA brake rotor has a solid body and replaces the traditional convective cooling of a vented rotor with conductive cooling to a connected aluminum wheel. Much lower temperatures result with the aluminum wheel acting as a great heat sink/radiator. The steel cladding further increases the capability of the SCA rotor to withstand higher surface temperatures. During the road tests of SCA rotors on three cars, significant gas mileage improvement was found; primarily attributed to the unique capability of the SCA rotor on pad drag reduction.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 2 – Model Validation Using Transient Data

1999-03-01
1999-01-0241
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of a cooling system for an on-highway heavy duty diesel powered truck under steady and transient operation. In Part 1 of this research, the code development and verification has been presented. The revised and enhanced VECSS (version 8.1) software is capable of simulating in real-time a Freightliner FLD 120 truck with a Detroit Diesel Series 60 engine, Behr McCord radiator, Allied signal / Garrett Automotive charge air cooler and turbocharger, Kysor DST variable speed fan clutch, DDC oil and coolant thermostat. Other cooling system components were run and compared with experimental data provided by Kysor Cooling Systems. The experimental data were collected using the Detroit Diesel Electronic Control's (DDEC) Electronic Control Module (ECM) and the Hewlett Packard (HP) data acquisition system.
Technical Paper

A Dynamic Computer-Aided Engineering Model for Automobile Climate Control System Simulation and Application Part I: A/C Component Simulations and Integration

1999-03-01
1999-01-1195
This paper details the computer algorithm which was developed to determine the A/C refrigeration circuit balance point under the system transient operating conditions. The A/C circuit model consisting of major component submodels, such as the evaporator, compressor, condenser, orifice, air handling system, and connecting hoses, are included in the study. Pressure drop and thermal capacity for the evaporator, condenser, and connecting ducts/hoses are also considered in the simulation. The results obtained from the simulation model are in good agreement with the experimental data. Users can take advantage of this CAE tool to optimize the A/C system design and to minimize the development process with time-saving and cost-effective perspectives.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

A Computational Model Describing the Performance of a Ceramic Diesel Particulate Trap in Steady-State Operation and Over a Transient Cycle

1999-03-01
1999-01-0465
A model for calculating the trap pressure drop, various particulate properties, filtration characteristics and trap temperatures was developed during the steady-state and transient cycles using the theory originated by Opris and Johnson, 1998. This model was validated with the data obtained from the steady-state cycles run with an IBIDEN SiC diesel particulate filter. To evaluate the trap experimental filtration efficiency, raw exhaust samples were taken upstream and downstream of the trap. A trap scaling and equivalent comparison model was developed for comparing different traps at the same volume and same filtration area. Using the model, the trap pressure drop data obtained from different traps were compared equivalently at the same trap volume and same filtration area. The pressure drop performance of the IBIDEN SiC trap compared favorably to the previously tested NoTox SiC and the Cordierite traps.
Book

Emission Control and Fuel Economy for Port and Direct Injected SI Engines

2005-06-27
Emission and fuel economy regulations and standards are compelling manufacturers to build ultra-low emission vehicles. As a result, engineers must develop spark-ignition engines with integrated emission control systems that use reformulated low-sulfur fuel. Emission Control and Fuel Economy for Port and Direct Injected SI Engines is a collection of SAE technical papers that covers the fundamentals of gasoline direct injection (DI) engine emissions and fuel economy, design variable effects on HC emissions, and advanced emission control technology and modeling approaches. All papers contained in this book were selected by an accomplished expert as the best in the field; reprinted in their entirety, they present a pathway to integrated emission control systems that meet 2004-2009 EPA standards for light-duty vehicles.
X