Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

Control-Oriented Modeling of a Vehicle Drivetrain for Shuffle and Clunk Mitigation

2019-04-02
2019-01-0345
Flexibility and backlash of vehicle drivelines typically cause unwanted oscillations and noise, known as shuffle and clunk, during tip-in and tip-out events. Computationally efficient and accurate driveline models are necessary for the design and evaluation of torque shaping strategies to mitigate this shuffle and clunk. To accomplish these goals, this paper develops a full-order physics-based model and uses this model to develop a reduced-order model (ROM), which captures the main dynamics that influence the shuffle and clunk phenomena. The full-order model (FOM) comprises several components, including the engine as a torque generator, backlash elements as discontinuities, and propeller and axle shafts as compliant elements. This model is experimentally validated using the data collected from a Ford vehicle. The validation results indicate less than 1% error between the model and measured shuffle oscillation frequencies.
Technical Paper

Influence of Elevated Injector Temperature on the Spray Characteristics of GDI Sprays

2019-04-02
2019-01-0268
When fuel at elevated temperatures is injected into an ambient environment at a pressure lower than the saturation pressure of the fuel, the fuel vaporizes in the nozzle and/or immediately upon exiting the nozzle; that is, it undergoes flash boiling. It is characterized by a two-phase flow regime co-located with primary breakup, which significantly affects the spray characteristics. Under flash boiling conditions, the near nozzle spray angle increases, which can lead to shorter penetration because of increased entrainment. In a multi-hole injector this can cause other impacts downstream resulting from the increased plume to plume interactions. To study the effect of injector temperature and injection pressure with real fuels, an experimental investigation of the spray characteristics of a summer grade gasoline fuel with 10% ethanol (E10) was conducted in an optically accessible constant volume spray vessel.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

2019-04-02
2019-01-1160
A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near top dead center (TDC) conditions in compression ignition (CI) engines was modified with post pre-burn gas induction to incorporate premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing, and limitations of the induction systems were studied. As a result of this study, the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system post pre-burn were conducted to determine the temperature limit of the methane auto-ignition.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Cavitation Prediction in Automotive Torque Converters

2005-05-16
2005-01-2557
As automotive torque converters decrease in both diameter and axial length, the effects of cavitation in the torque converter becomes increasingly important on noise, efficiency, and performance goals. Therefore, a cavitation prediction technique is developed in this investigation. In a previous investigation it was shown that cavitation is effected by inlet temperature, charge pressure, and K-factor. The prediction technique is devolved to encompass these variables. A dimensional analysis using the power product method is performed with all relevant variables. The nearfield acoustical cavitation detection technique, discussed in the previous investigation, is used to obtain experimental results from a torque converter test lab. The test matrix for the experimental results was constructed to include effects from inlet temperature, charge pressure, and K-factor. The data obtained experimentally is used to curve fit the results found through the power product method.
Technical Paper

Momentum Coupling by Means of Lagrange Polynomials in the CFD Simulation of High-Velocity Dense Sprays

2004-03-08
2004-01-0535
The discrete droplet model is widely used to describe two-phase flows such as high-velocity dense sprays. The interaction between the liquid and the gas phase is modeled via appropriate source terms in the gas phase equations. This approach can lead to a strong dependence of the liquid-gas coupling on the spatial resolution of the gas phase. The liquid-gas coupling requires the computation of source terms using the gas phase properties, and, subsequently, these sources are then distributed onto the gas phase mesh. In this study, a Lagrange polynomial interpolation method has been developed to evaluate the source terms and also to distribute these source terms onto the gas mesh. The focus of this investigation has been on the momentum exchange between the two phases. The Lagrange polynomial interpolation and source term distribution methods are evaluated for non-evaporating sprays using KIVA3 as a modeling platform.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Gradient-Based Optimization of a Multi-Orifice Asynchronous Injection System in a Diesel Engine Using an Adaptive Cost Function

2006-04-03
2006-01-1551
A gradient-based optimization tool has been developed and, in conjunction with a CFD code, utilized in the search of optimal fuel injection strategies. The approach taken uses a steepest descent method with an adaptive cost function, where the line search is performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for a non-road version of the Sulzer S20 DI diesel engine which, for these simulations, is equipped with a multi-orifice, asynchronous injection system. This system permits an independent timing of the fuel pulses, and each orifice has its own diameter and injection direction.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
X