Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

PHEV Real World Driving Cycle and Energy and Fuel Consumption Reduction Potential for Connected and Automated Vehicles

This paper presents real world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real world driving cycle for assessing potential energy savings for connected and automated vehicle control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charges. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.4% of mean energy consumption regardless of initial battery state of charge.
Technical Paper

Methods of Pegging Cylinder Pressure to Maximize Data Quality

Engine cylinder pressure is traditionally measured with a piezo-electric pressure transducer, and as such, must be referenced or pegged to a known value. Frequently, the cylinder pressure is pegged to the pressure in the intake manifold plenum whereby the manifold absolute pressure (MAP) at the end of the intake stroke is measured and the cylinder pressure trace for the entire cycle is adjusted such that the cylinder pressure is set equal to the manifold pressure at the end of the intake stroke. However, any error in pegging induces an error in the cylinder pressure trace, which has an adverse effect on the entire combustion analysis. This research is focused on assessing the pegging error for several pegging methods across a wide range of engine operating conditions, and ultimately determining best practices to minimize error in pegging and the calculated combustion metrics. The study was conducted through 1D simulations using the commercially available GT-Power.