Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

PHEV Real World Driving Cycle Energy and Fuel and Consumption Reduction Potential for Connected and Automated Vehicles

2019-04-02
2019-01-0307
This paper presents real-world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real-world driving cycle for assessing potential energy savings for connected and automated vehicle (CAV) control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charge. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.6% of mean energy consumption regardless of initial battery state of charge.
Technical Paper

Methods of Pegging Cylinder Pressure to Maximize Data Quality

2019-04-02
2019-01-0721
Engine cylinder pressure is traditionally measured with a piezo-electric pressure transducer, and as such, must be referenced or pegged to a known value. Frequently, the cylinder pressure is pegged to the pressure in the intake manifold plenum whereby the manifold absolute pressure (MAP) at the end of the intake stroke is measured and the cylinder pressure trace for the entire cycle is adjusted such that the cylinder pressure is set equal to the manifold pressure at the end of the intake stroke. However, any error in pegging induces an error in the cylinder pressure trace, which has an adverse effect on the entire combustion analysis. This research is focused on assessing the pegging error for several pegging methods across a wide range of engine operating conditions, and ultimately determining best practices to minimize error in pegging and the calculated combustion metrics. The study was conducted through 1D simulations using the commercially available GT-Power.
Technical Paper

Computationally Efficient Reduced-Order Powertrain Model of a Multi-Mode Plug-In Hybrid Electric Vehicle for Connected and Automated Vehicles

2019-04-02
2019-01-1210
This paper presents the development of a reduced-order powertrain model for energy and SOC estimation of a multi-mode plug-in hybrid electric vehicle using only vehicle speed profile and route elevation as inputs. Such a model is intended to overcome the computational inefficiencies of higher fidelity powertrain and vehicle models in short and long horizon energy optimization efforts such as Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND), Eco Routing, and PHEV mode blending. The reduced-order powertrain model enables Connected and Automated Vehicles (CAVs) to utilize the onboard sensor and connected data to quickly react and plan their maneuvers to highly dynamic road conditions with minimal computational resources.
Technical Paper

Route-Optimized Energy Management of Connected and Automated Multi-Mode Plug-In Hybrid Electric Vehicle Using Dynamic Programming

2019-04-02
2019-01-1209
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The PHEV used in this investigation is the second-generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method used is dynamic programming (DP) paired with a reduced-order powertrain model to enable onboard embedded controller compatibility and computational efficiency in optimally blending CD, CS modes over the entire drive route.
Technical Paper

Engine On/Off Optimization for an xHEV during Charge Sustaining Operation on Real World Driving Routes Using Connectivity Data

2021-04-06
2021-01-0433
This paper presents a methodology that optimizes the periods of engine operation on a selected route for a Plug-in Hybrid Electric Vehicle (PHEV) or Hybrid Electric Vehicle (HEV) using Connected Vehicle data to minimize energy consumption. The study was conducted using a Reduced-Order Powertrain model of second-generation Chevrolet Volt. The method utilizes the Backward Induction Dynamic Programming algorithm to come up with an optimal control mode matrix of engine operation along the selected route for various battery states of charge. The objective of this method is to make use of Vehicle Connectivity to minimize the energy utilization of an HEV by using the speed and elevation profile of a selected route transmitted to the vehicle via V2X communication systems.
Journal Article

Control Strategy and Energy Recovery Potential for P2 Parallel Hybrid Step Gear Automatic Transmissions

2019-04-02
2019-01-1302
The purpose of this investigation is to present a control strategy and energy recovery potential for P2 parallel hybrid step gear automatic transmissions. The automatic transmission types considered for the investigation are rear wheel drive 8 speed dual clutch transmission and 8 speed planetary automatic equipped each equipped with an electric motor between the engine and transmission. The governing equations of clutch-to-clutch upshift controls are presented and are identical for each transmission type. Various strategies are explored for executing the upshift under a range of input torques, shift times and engine torque management approaches. The differences in energy recovery potential based upon control strategy is explored piecewise as well as through a DFSS study. On a comprehensive drive cycle consisting of FTP 75, US06 and HWFET test cycles, it is shown that upshift regen torque management can be equivalent to approximately 0.8% of the total fuel energy used.
Journal Article

Coordinated Torque, Energy and Clutch Control Strategy for Downshifts in P2 Parallel xHEV Powertrains

2021-04-06
2021-01-0696
This paper describes a methodology for investigating the controls coordination of clutch and propulsion torque sources relative to clutch energy, electrification energy consumption and output torque profile for offgoing controlled downshifts in P2 parallel xHEV powertrain configurations. The focus is on an 8 speed planetary automatic transmission, but the approach is equally applicable to any powerflow design with clutch-to-clutch shifting. The modeling technique is for an overall control strategy relative to achieving a targeted transmission input speed profile. A reduced order model of the transmission system is presented that accounts for input shaft acceleration and compensation of inertial contributions to offgoing clutch torque and transmission output torque.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
X