Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Experimental and Computational Study of a Single Diesel Droplet Impinging on an Inclined Dry Surface

2022-03-29
2022-01-0499
Fuel spray interactions with piston surfaces and cylinder walls in internal combustion engines have been extensively studied in the past decades. However, there still exists an imperative knowledge gap on the fundamental understanding of dynamic droplet-wall interactions. Particularly, the impinging angle of droplet has been barely investigated as it renders asymmetrical droplet behaviors. This paper aims to provide detailed data of droplet-inclined surface impingement physics which could further support spray-wall model development. The experimental work of single diesel droplet impinging on an inclined dry surface was conducted under isothermal (25°C) conditions. Various droplet impact angle (φ) was achieved by adjusting surface tilting angle which was set from 0° to 45° in current study. A single diesel droplet impinged onto the inclined surface with different Weber number (around 20 ~ 800).
Technical Paper

Investigation of the Effects of Heat Transfer and Thermophysical Properties on Dynamics of Droplet-Wall Interaction

2019-04-02
2019-01-0296
Fuel spray-wall interaction frequently occurs on intake manifold wall in the port fuel injection engine and on the piston in the direct injection engine, especially during the cold start. The heat transfer between the spray and wall is involved in this interaction process and influences the dynamics of the impinged spray which can further affect the engine performance. The physics of impact dynamics of a single droplet serves as a fundamental for better comprehension of spray impingement. In our previous studies, we have focused on diesel droplets, at ambient temperature, impinging on both heated and non-heated wall and found impinged droplet morphology differences. To understand the effect of heat transfer and thermophysical properties on dynamics of droplet-wall interaction better, droplet temperature variation was introduced in this study. Therefore, different conditions were framed to explore the impact of thermophysical properties of the droplet.
Technical Paper

Experimental and Numerical Study of Water Injection under Gasoline Direct Injection Engine Relevant Conditions

2023-04-11
2023-01-0313
Water injection has been used to reduce the charge temperature and mitigate knocking due to its higher latent heat of vaporization compared to gasoline fuel. When water is injected into the intake manifold or into the cylinder, it evaporates by absorbing heat energy from the surrounding and results in charge cooling. However, the effect of detailed evaporation process on the combustion characteristics under gasoline direct injection relevant conditions still needs to be investigated. Therefore, spray study was firstly conducted using a multi-hole injector by injecting pure water and water-methanol mixture into constant volume combustion chamber (CVCC) at naturally aspirated and boosted engine conditions. The target water-fuel ratio was fixed at 0.5. Mie-scattering and schlieren images of sprays were analyzed to study spray characteristics, and evaluate the amount of water vaporization.
X