Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Emissions and Fuel Usage by the U. S. Truck and Bus Population and Strategies for Achieving Reductions

This paper presents an approach to modeling the United States truck and bus population. A detailed model is developed that utilizes domestic factory sales figures combined with a scrappage factor as a building block for the total population. Comparison with historical data for 1958-1970 shows that the model follows trends well for intermediate parameters such as total vehicle miles per year, total fuel consumption, scrappage, etc. Fuel consumption and HC, CO, NO2, CO2 and particulate matter emissions for gasoline and diesel engines are of primary interest. The model details these parameters for the time span 1958-2000 in one-year increments. For HC and CO, truck and bus emissions could equal or exceed automobile emissions in the early 1980s, depending on the degree of control. Three population control strategies are analyzed to determine their effects on reducing fuel consumption or air pollution in later years.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

Particulate Matter and Nitrogen Oxides Kinetics Based on Engine Experimental Data for a Catalyzed Diesel Particulate Filter

A numerical model to simulate the filtration and oxidation of PM as well as the oxidation of NO, CO and HC in a CPF was developed in reference [1]. The model consists of parameters related to filtration and oxidation of PM and oxidation of NO, CO and HC. One of the goals of this paper is to use the model to determine the PM and gaseous species kinetics for ULSD, B10 and B20 fuels using data from passive oxidation and active regeneration engine experimental studies. A calibration procedure to identify the PM cake and wall filtration parameters and kinetic parameters for the PM oxidation and NO, CO and HC oxidation was developed. The procedure was then used with the passive oxidation [2] and active regeneration [3] engine data. The tests were conducted on a 2007 Cummins ISL engine with a DOC and CPF aftertreatment system. The simulation results show good agreement with the experimental CPF pressure drop, PM mass retained measurements and the outlet NO, NO2, CO and HC concentrations.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.