Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 1: Development and Validation

2010-10-25
2010-01-2239
Hybrid vehicle engines modified for high exhaust gas recirculation (EGR) are a good choice for high efficiency and low NOx emissions. Such operation can result in an HEV when a downsized engine is used at high load for a large fraction of its run time to recharge the battery or provide acceleration assist. However, high EGR will dilute the engine charge and may cause serious performance problems such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. It is accepted that the detailed experimental characterization of flow field near top dead center (TDC) in an engine environment is no longer practical and cost effective.
Technical Paper

Numerical Simulation and Experimental Verification of Gasoline Intake Port Design

2015-04-14
2015-01-0379
The hybrid vehicle engines modified for high exhaust gas recirculation (EGR) is a good choice for high efficiency and low NOx emissions. However, high EGR will dilute the engine charge and may cause serious performance problems, such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. To achieve the goal of increasing tolerance to EGR, this work reports a CFD investigation of high tumble intake port design using STAR-CD. The validations had been performed through the comparison with PIV experimental tests.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

Evaluation of the Two-Step Hiroyasu Soot Model over a Broad Range of Diesel Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used to evaluate the classic two-step Hiroyasu soot model. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm. A single nominal operating condition was studied: 100% load at 1800 rpm. Variations in the start of injection, injection pressure, intake pressure, and exhaust gas recirculation (EGR) level were also studied.
Journal Article

Early Investigation of Ducted Fuel Injection for Reducing Soot in Mixing-Controlled Diesel Flames

2018-04-03
2018-01-0238
Ducted fuel injection (DFI) is a developing technology for reducing in-cylinder soot formed during mixing-controlled combustion in diesel compression ignition engines. Fuel injection through a small duct has the effect of extending the lift-off length (LOL) and reducing the equivalence ratio at ignition. In this work, the feasibility of DFI to reduce soot and to enable leaner lifted-flame combustion (LLFC) is investigated for a single diesel jet injected from a 138 μm orifice into engine-like (60-120 bar, 800-950 K) quiescent conditions. High-speed imaging and natural luminosity (NL) measurements of combusting sprays were used to quantify duct effects on jet penetration, ignition delay, LOL, and soot emission in a constant pressure high-temperature-pressure vessel (HTPV). At the highest ambient pressure and temperatures tested, soot luminosity was reduced by as much as 50%.
X