Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

1996-02-01
960879
Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

Performance of Organic Acid Based Coolants in Heavy Duty Applications

1996-02-01
960644
Coolant formulations based on organic acid corrosion inhibitor technology have been tested in over 180 heavy duty engines for a total of more than 50 million kilometers. This testing has been used to document long life coolant performance in various engine types from four major engine manufacturers. Inspections of engines using organic acid based coolant (with no supplemental coolant additive) for up to 610,000 kilometers showed excellent protection of metal engine components. Improved protection was observed against cylinder liner, water pump, and aluminum spacer deck corrosion. In addition, data accumulated from this testing were used to develop depletion rate curves for long life coolant corrosion inhibitors, including tolyltriazole and nitrite. Nitrite was observed to deplete less rapidly in long life coolants than in conventional formulations.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

1977-02-01
770313
Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

The Effect of Oil and Coolant Temperatures on Diesel Engine Wear

1977-02-01
770086
A study has been made of piston ring wear and total engine wear using literature data and new experimental results. The main purpose of the study was to establish the effects of oil and coolant temperatures on engine wear. Wear trends that were found in the early 1960's may not be valid any longer because of the development of higher BMEP turbocharged diesel engines, better metallurgical wear surfaces and improved lube oil properties. New data are presented for the purpose of describing present wear trends. A direct-injection, 4-cycle, turbocharged diesel engine was used for the wear tests. The radioactive tracer technique was used to measure the top piston ring chrome face wear. Atomic emission spectroscopy was employed to determine the concentration of wear metals in the oil to determine total engine wear based on iron and lead. The data were analyzed and compared to the results found in the literature from previous investigators.
Technical Paper

A Method for Precise Placement of Hose Models

2013-04-08
2013-01-0603
A method is presented for precise mounting of a hose model with any specified twist. Once mounting points and directions are specified, a hose of a specified length can be developed using discrete beams. A divide and conquer approach is employed to position, orient, decouple the free end of the hose model in a twist free state that is then twisted to a specified angle. The development of the kinematic elements necessary to do this is presented. Some Cosserat models have been shown to branch into multiple solutions while the method presented here has always converged to the minimum energy solution. The method for linking the hose model to other linkages is discussed as well one common error committed by users in implementing the link. In order to model the torsional properties of the hose, the torsional stiffness must be modified. A method for doing this using digital scans is discussed.
Technical Paper

Extreme Field Test for Organic Additive Coolant Technology

2005-11-01
2005-01-3579
Field testing of an extended life coolant technology in Class 8 trucks, equipped with Caterpillar C-12 engines revealed excellent coolant life with negligible inhibitor depletion to 400,000 miles with no refortification and no coolant top-off. In separate evaluations in Caterpillar 3406E equipped trucks, extended corrosion protection and component durability were established out to 700,000 miles, without the need for refortification other than top-off.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 1 - Model Development

1999-03-01
1999-01-0240
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of the cooling system of an on-highway heavy duty diesel powered truck under steady and transient operation. This code includes an engine cycle analysis program along with various components for the four main fluid circuits for cooling air, cooling water, cooling oil, and intake air, all evaluated simultaneously. The code predicts the operation of the response of the cooling circuit, oil circuit, and the engine compartment air flow when the VECSS is operated using driving cycle data of vehicle speed, engine speed, and fuel flow rate for a given ambient temperature, pressure and relative humidity.
Technical Paper

Solder Protection with Extended Life, Carboxylate-Based Coolants

2000-06-19
2000-01-1979
Silicate-free, carboxylate based technology as typified by Texaco Extended Life Coolant (TELC) and Caterpillar Extended Life Coolant (ELC), both meeting Caterpillar's EC-1 Coolant Specification, offer excellent corrosion protection for commercial lead solders commonly used in the fabrication of copper/brass radiators and heater cores throughout the trucking industry. Results of laboratory testing using solders from commercial radiators manufacturers and extensive field coolant analysis compare extended life technology with the popular conventional coolant technologies. In the laboratory, the effect of coolant concentration on solder protection is explored using the glassware corrosion test, ASTM D-1384. At concentrations ranging from 33% up to 75% the carboxylate technology offers comparable to superior protection when compared to the popular heavy-duty conventional coolant containing silicates and phosphates.
Technical Paper

An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design

2007-04-16
2007-01-0147
This study focuses on how to predict hot spots of one of the cylinders of a V8 5.4 L FORD engine running at full load. The KIVA code with conjugate heat transfer capability to simulate the fast transient heat transfer process between the gas and the solid phases has been developed at the Michigan Technological University and will be used in this study. Liquid coolant flow was simulated using FLUENT and will be used as a boundary condition to account for the heat loss to the cooling fluid. In the first step of calculation, the coupling between the gas and the solid phases will be solved using the KIVA code. A 3D transient wall heat flux at the gas-solid interface is then compiled and used along with the heat loss information from the FLUENT data to obtain the temperature distribution for the engine metal components, such as cylinder wall, cylinder head, etc.
Technical Paper

Development of the Enhanced Vehicle and Engine Cooling System Simulation and Application to Active Cooling Control

2005-04-11
2005-01-0697
The increasing complexity of vehicle engine cooling systems results in additional system interactions. Design and evaluation of such systems and related interactions requires a fully coupled detailed engine and cooling system model. The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University was enhanced by linking with GT-POWER for the engine/cycle analysis model. Enhanced VECSS (E-VECSS) predicts the effects of cooling system performance on engine performance including accessory power and fuel conversion efficiency. Along with the engine cycle, modeled components include the engine manifolds, turbocharger, radiator, charge-air-cooler, engine oil circuit, oil cooler, cab heater, coolant pump, thermostat, and fan. This tool was then applied to develop and simulate an actively controlled electric cooling system for a 12.7 liter diesel engine.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

Development of Electronic Fan Control Systems

1994-09-01
941765
Engine cooling fan systems for off-highway machinery require a significant amount of horsepower and contribute to the overall noise level of the machine. Reducing fan speed in times of low cooling demand provides a means to reduce vehicle noise levels and divert engine horsepower from the fan to do productive work. The fan must, however, continue to provide adequate airflow when demanded by the cooling system. Electronic fan controls that modulate fan speed to meet changing cooling system requirements provide the above advantages.
X