Refine Your Search

Topic

Author

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

Frictional Performance Test for Transmission and Drive Train Oils

1991-02-01
910745
Lubricating oil affects the performance of friction materials in transmission, steering and brake systems. The TO-2 Test measured friction retention characteristics of lubricating oils used with sintered bronze friction discs. This paper introduces a new friction performance test for drive train lubricants that will be used to support Caterpillar's new transmission and drive train fluid requirements, TO-4, which measures static and dynamic friction, wear, and energy capacity for six friction materials, and replaces the TO-2 test. The new test device to be introduced is an oil cooled, single-faced clutch in the Link Engineering Co. M1158 Oil/Friction Test Machine.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Analytical Simulation of the Effects of Noise Control Treatments on an Excavator Cab using Statistical Energy Analysis

2007-05-15
2007-01-2315
The objective of this study was to utilize Statistical Energy Analysis (SEA) to simulate the effects of a variety of noise control treatments on the interior sound pressure level (SPL) of a commercial excavator cab. In addition, the effects of leaks on the SPL of the excavator cab were also investigated. This project was conducted along with various tests that were used to determine the inputs needed to accurately represent the loads that the cab experienced during operation. This paper explains the how the model was constructed, how the loads were applied to the model, the results that were obtained from application of treatments, and a study of the effects of introducing leaks to the cab structure in the SEA model.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

Experimental Studies of an Advanced Ceramic Diesel Particulate Filter

2008-04-14
2008-01-0622
A Cummins ISB 5.9 liter medium-duty engine with cooled EGR has been used to study an early extrusion of an advanced ceramic uncatalyzed diesel particulate filter (DPF). Data for the advanced ceramic material (ACM) and an uncatalyzed cordierite filter of similar dimensions are presented. Pressure drop data as a function of mass loadings (0, 4, and 6 grams of particulate matter (PM) per liter of filter volume) for various flow rate/temperature combinations (0.115 - 0.187 kg/sec and 240 - 375 °C) based upon loads of 15, 25, 40 and 60% of full engine load (684 N-m) at 2300 rpm are presented. The data obtained from these experiments were used to calibrate the MTU 1-D 2-Layer computer model developed previously at MTU. Clean wall permeability determined from the model calibration for the ACM was 5.0e-13 m2 as compared to 3.0e-13 m2 for cordierite.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
X