Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Statistical Models of RADAR and LIDAR Returns from Deer for Active Safety Systems

2016-04-05
2016-01-0113
Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Application of a Self-Adjusting Audible Warning Device as a Backup Alarm for Mobile Earthmoving Equipment

2005-11-01
2005-01-3507
Most pieces of mobile equipment (machines) produce an audible signal to indicate movement in the rearward direction. This signal is intended to alert nearby personnel of the potential danger associated with the machine moving in a direction where the operator may not be able to see people or objects in the machine path. Anyone who has been on or near a construction site recognizes the familiar “beep…beep…beep…” of this signal as the backup alarm. To be effective, the backup alarm must be discernible, timely, and relevant to those people where a reaction is intended. As machine designers respond to various sound directives for reducing sound emissions (including the backup alarm), the performance of the backup alarm is receiving special attention. An emerging solution is an alarm capable of sensing ambient sounds and producing an audible signal proportional to the sensed sound levels-a self-adjusting backup alarm.
Technical Paper

Evaluation of Off-Highway Vehicle Cab Noise and Vibration Using Inverse Matrix Techniques

1999-09-14
1999-01-2815
Noise Path Analysis techniques (NPA) have been developed and refined by the automotive industry for structure-borne noise and vibration evaluation of their products. Off-highway vehicles, particularly those with enclosed cabs, are excellent candidates for the application of these techniques. Like automobiles, many off-highway machines are typically driven by a rotating power source, have a well-defined acoustic receiver space, and use some form of isolation between source and receiver sub-systems. These structural characteristics make NPA a useful tool for identifying dominant sources and energy transfer paths. The objectives of this paper are to revisit the fundamental theory of matrix inversion as it applies to NPA techniques, and to address the common setup and measurement issues encountered when acquiring noise path data on off-highway machines. A general overview of the procedures involved in applying NPA to an off-highway machine will be presented.
Technical Paper

Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods

1999-09-14
1999-01-2818
Several very different order tracking and analysis techniques for rotating equipment have been developed recently that are available in commercial noise and vibrations software packages. Each of these order tracking methods has distinct trade-offs for many common applications and very specific advantages for special applications in sound quality or noise and vibrations troubleshooting. The Kalman, Vold-Kalman, Computed Order Tracking, and the Time Variant Discrete Fourier Transform as well as common FFT based order analysis methods will all be presented. The strengths and weaknesses of each of the methods will be presented as well as the highlights of their mathematical properties. This paper is intended to be an overview of currently available technology with all methods presented in a common format that allows easy comparison of their properties. Several analytical examples will be presented to thoroughly document each methods' behavior with different types of data.
Technical Paper

Implementation of the Time Variant Discrete Fourier Transform as a Real-Time Order Tracking Method

2007-05-15
2007-01-2213
The Time Variant Discrete Fourier Transform was implemented as a real-time order tracking method using developed software and commercially available hardware. The time variant discrete Fourier transform (TVDFT) with the application of the orthogonality compensation matrix allows multiple tachometers to be tracked with close and/or crossing orders to be separated in real-time. Signal generators were used to create controlled experimental data sets to simulate tachometers and response channels. Computation timing was evaluated for the data collection procedure and each of the data processing steps to determine how each part of the process affects overall performance. Many difficulties are associated with a real-time data collection and analysis tool and it becomes apparent that an understanding of each component in the system is required to determine where time consuming computation is located.
Technical Paper

Threshold Level as an Index of Squeak and Rattle Performance

1999-05-17
1999-01-1730
A practical approach for evaluating and validating global system designs for Squeak and Rattle performance is proposed. Using simple slip and rattle models, actual sound and vibration data, and the fundamentals of audiological perception, analysis tools adapted from Chaos Theory are used to establish threshold levels of performance and identify system characteristics which are significant contributors to Squeak and Rattle. Focus on system design is maintained by using a simple rattle noise indicator and relating rattle events to levels of dynamic motion (acceleration, velocity, etc.). The threshold level is defined as the level of acceleration at which the system moves from a non-rattling state to a rattling state. The approach is demonstrated with a simple analytical model applied to an experimental structure under dynamic load.
Technical Paper

Extraction/Filtration of Transients Embedded in Stationary Signals Using Wavelets; Focus on Extraction of Frequency Response Functions

1999-05-17
1999-01-1824
Recent trends in signal processing have led to the discovery and implementation of wavelets as tools of many different applications. This paper focuses on their use as a tool for transient extraction. From the Discrete Wavelet Transform (DWT), specific coefficients are picked using a coherence-based criterion. These coefficients are then taken back to the time domain as the extracted transient. If the extracted transient is a response from a measured input, then a frequency response function can be formulated.
Technical Paper

A Framework to Study Human Response to Whole Body Vibration

2007-06-12
2007-01-2474
A framework to study the response of seated operators to whole-body vibration (WBV) is presented in this work. The framework consists of (i) a six-degree-of-freedom man-rated motion platform to play back ride files of typical heavy off-road machines; (ii) an optical motion capture system to collect 3D motion data of the operators and the surrounding environment (seat and platform); (iii) a computer skeletal model to embody the tested subjects in terms of their body dimensions, joint centers, and inertia properties; (iv) a marker placement protocol for seated positions that facilitates the process of collecting data of the lower thoracic and the lumbar regions of the spine regardless of the existence of the seatback; and (v) a computer human model to solve the inverse kinematics/dynamic problem for the joint profiles and joint torques. The proposed framework uses experimental data to answer critical questions regarding human response to WBV.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

2004-06-08
2004-01-1843
Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Investigation of Flow Conditions and Tumble near the Spark Plug in a DI Optical Engine at Ignition

2018-04-03
2018-01-0208
Tumble motion plays a significant role in modern spark-ignition engines in that it promotes mixing of air/fuel for homogeneous combustion and increases the flame propagation speed for higher thermal efficiency and lower combustion variability. Cycle-by-cycle variations in the flow near the spark plug introduce variability to the initial flame kernel development, stretching, and convection, and this variability is carried over to the entire combustion process. The design of current direct-injection spark-ignition engines aims to have a tumble flow in the vicinity of the spark plug at the time of ignition. This work investigates how the flow condition changes in the vicinity of the spark plug throughout the late compression stroke via high-speed imaging of a long ignition discharge arc channel and its stretching, and via flow field measurement by particle imaging velocimetry.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
X